Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes

Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M (2018)
Physical Chemistry Chemical Physics 20(15): 10470-10492.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Clayton, Jessica A.; Keller, Katharina; Qi, MianUniBi ; Wegner, Julia; Koch, Vanessa; Hintz, Henrik; Godt, AdelheidUniBi; Han, Songi; Jeschke, Gunnar; Sherwin, Mark S.; Yulikov, Maxim
Erscheinungsjahr
2018
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
20
Ausgabe
15
Seite(n)
10470-10492
ISSN
1463-9076
eISSN
1463-9084
Page URI
https://pub.uni-bielefeld.de/record/2920397

Zitieren

Clayton JA, Keller K, Qi M, et al. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Physical Chemistry Chemical Physics. 2018;20(15):10470-10492.
Clayton, J. A., Keller, K., Qi, M., Wegner, J., Koch, V., Hintz, H., Godt, A., et al. (2018). Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Physical Chemistry Chemical Physics, 20(15), 10470-10492. doi:10.1039/c7cp08507a
Clayton, J. A., Keller, K., Qi, M., Wegner, J., Koch, V., Hintz, H., Godt, A., Han, S., Jeschke, G., Sherwin, M. S., et al. (2018). Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Physical Chemistry Chemical Physics 20, 10470-10492.
Clayton, J.A., et al., 2018. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Physical Chemistry Chemical Physics, 20(15), p 10470-10492.
J.A. Clayton, et al., “Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes”, Physical Chemistry Chemical Physics, vol. 20, 2018, pp. 10470-10492.
Clayton, J.A., Keller, K., Qi, M., Wegner, J., Koch, V., Hintz, H., Godt, A., Han, S., Jeschke, G., Sherwin, M.S., Yulikov, M.: Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Physical Chemistry Chemical Physics. 20, 10470-10492 (2018).
Clayton, Jessica A., Keller, Katharina, Qi, Mian, Wegner, Julia, Koch, Vanessa, Hintz, Henrik, Godt, Adelheid, Han, Songi, Jeschke, Gunnar, Sherwin, Mark S., and Yulikov, Maxim. “Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes”. Physical Chemistry Chemical Physics 20.15 (2018): 10470-10492.

63 References

Daten bereitgestellt von Europe PubMed Central.

Gd spin labeling for distance measurements by pulse EPR spectroscopy
Goldfarb D., 2014
Spectroscopically orthogonal spin labels and distance measurements in biomolecules
Yulikov M., 2015
Gd³⁺ Spin Labeling for Measuring Distances in Biomacromolecules: Why and How?
Feintuch A, Otting G, Goldfarb D., Meth. Enzymol. 563(), 2015
PMID: 26478494
Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags.
Abdelkader EH, Yao X, Feintuch A, Adams LA, Aurelio L, Graham B, Goldfarb D, Otting G., J. Biomol. NMR 64(1), 2015
PMID: 26597990
Model-free extraction of spin label position distributions from pseudocontact shift data.
Suturina EA, Haussinger D, Zimmermann K, Garbuio L, Yulikov M, Jeschke G, Kuprov I., Chem Sci 8(4), 2017
PMID: 28553510
Progress in Lanthanides as Luminescent Probes
Reifernberger JG, Ge P, Selvin PR., 2005

Abragam A, Bleaney B., 1970

Cotton S., 2006
Interpretation of S-state ion E.P.R. spectra
Newman D, Urban W., 1975
Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.
Dalaloyan A, Qi M, Ruthstein S, Vega S, Godt A, Feintuch A, Goldfarb D., Phys Chem Chem Phys 17(28), 2015
PMID: 26108866
Overcoming artificial broadening in Gd(3+)-Gd(3+) distance distributions arising from dipolar pseudo-secular terms in DEER experiments.
Cohen MR, Frydman V, Milko P, Iron MA, Abdelkader EH, Lee MD, Swarbrick JD, Raitsimring A, Otting G, Graham B, Feintuch A, Goldfarb D., Phys Chem Chem Phys 18(18), 2016
PMID: 27102158
RIDME distance measurements using Gd(iii) tags with a narrow central transition.
Collauto A, Frydman V, Lee MD, Abdelkader EH, Feintuch A, Swarbrick JD, Graham B, Otting G, Goldfarb D., Phys Chem Chem Phys 18(28), 2016
PMID: 27355583
Computing distance distributions from dipolar evolution data with overtones: RIDME spectroscopy with Gd(iii)-based spin labels.
Keller K, Mertens V, Qi M, Nalepa AI, Godt A, Savitsky A, Jeschke G, Yulikov M., Phys Chem Chem Phys 19(27), 2017
PMID: 28660955
Sensitivity enhancement by population transfer in Gd(III) spin labels.
Doll A, Qi M, Pribitzer S, Wili N, Yulikov M, Godt A, Jeschke G., Phys Chem Chem Phys 17(11), 2015
PMID: 25697259
Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd(3+)-DTPA chelate complexes.
Yulikov M, Lueders P, Warsi MF, Chechik V, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22743649
Distance measurements on orthogonally spin-labeled membrane spanning WALP23 polypeptides
Lueders P, Jager H, Hemminga MA, Jeschke G, Yulikov M., 2013
Gd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance.
Clayton JA, Qi M, Godt A, Goldfarb D, Han S, Sherwin MS., Phys Chem Chem Phys 19(7), 2017
PMID: 28139788
Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements.
Raitsimring AM, Gunanathan C, Potapov A, Efremenko I, Martin JM, Milstein D, Goldfarb D., J. Am. Chem. Soc. 129(46), 2007
PMID: 17963387
Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures.
Raitsimring A, Dalaloyan A, Collauto A, Feintuch A, Meade T, Goldfarb D., J. Magn. Reson. 248(), 2014
PMID: 25442776
High-Field Pulsed EPR and ENDOR of Gd Complexes in Glassy Solutions
Raitsimring AM, Astashkin AV, Poluektov OG, Caravan P., 2005
A survey of the EPR spectra of Gd3+ in single crystals
Buckmaster HA, Shing YH., 1972
High-frequency EPR and ENDOR characterization of MRI contrast agents
Raitsimring AM, Astashkin AV, Caravan P., 2009
The EPR of high spin Fe in rhombic fields
Blumberg W., 1967
Wide zero field interaction distributions in the high-spin EPR of metalloproteins
Hagen WR., 2007
Quantitative analysis of dinuclear manganese(II) EPR spectra.
Golombek AP, Hendrich MP., J. Magn. Reson. 165(1), 2003
PMID: 14568515
Modelling of multifrequency ESR spectra of Fe ions in crystalline and amorphous materials: A Simplified approach to determine statistical distributions of spin-spin coupling parameters
Scholz G, Stsser R, Krossner M, Klein J., 2001
Electron paramagnetic resonance of Fe ions in borate glass: computer simulations
Yahiaoui EM, Berger R, Servant Y, Kliava J, Cugunov L, Mednis A., 1994
Multiple-frequency and variable-temperature EPR study of gadolinium(III) complexes with polyaminocarboxylates: Analysis and comparison of the magnetically dilute powder and the frozen-solution spectra
Benmelouka M, Van J, Borel A, Nellutla S, Port M, Helm L, Brunel LC, Merbach AE., 2009
A Q-band pulse EPR/ENDOR spectrometer and the implementation of advanced one- and two-dimensional pulse EPR methodology.
Gromov I, Shane J, Forrer J, Rakhmatoullin R, Rozentzwaig Y, Schweiger A., J. Magn. Reson. 149(2), 2001
PMID: 11318618
Cryogenic 35GHz pulse ENDOR probehead accommodating large sample sizes: Performance and applications.
Tschaggelar R, Kasumaj B, Santangelo MG, Forrer J, Leger P, Dube H, Diederich F, Harmer J, Schuhmann R, Garcia-Rubio I, Jeschke G., J. Magn. Reson. 200(1), 2009
PMID: 19581114
High sensitivity and versatility of the DEER experiment on nitroxide radical pairs at Q-band frequencies.
Polyhach Y, Bordignon E, Tschaggelar R, Gandra S, Godt A, Jeschke G., Phys Chem Chem Phys 14(30), 2012
PMID: 22751953
Pulsed electron paramagnetic resonance spectroscopy powered by a free-electron laser.
Takahashi S, Brunel LC, Edwards DT, van Tol J, Ramian G, Han S, Sherwin MS., Nature 489(7416), 2012
PMID: 22996555
Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields.
Edwards DT, Ma Z, Meade TJ, Goldfarb D, Han S, Sherwin MS., Phys Chem Chem Phys 15(27), 2013
PMID: 23732863
Passage Effects in Paramagnetic Resonance Experiments
Weger M., 1960
Rapid passage effects in electron spin resonance
Portis A., 1955
Paramagnetic Resonance Spectrum of Manganese in Cubic MgO and GaF
Low W., 1957
Investigation of biological systems by high resolution 2-mm wave band ESR.
Krinichnyi VI., J. Biochem. Biophys. Methods 23(1), 1991
PMID: 1655857
Electron spin echo envelope modulation theory for high electron spin systems in weak crystal field
Astashkin AV, Raitsimring AM., 2002
Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting.
Garbuio L, Zimmermann K, Haussinger D, Yulikov M., J. Magn. Reson. 259(), 2015
PMID: 26342680
Solid-state and solution properties of the lanthanide complexes of a new non-adentate tripodal ligand derived from 1,4,7-triazacyclo- nonane
Gateau C, Mazzanti M, Pecaut J, Dunand FA, Helm L., 2003
Gd(III) Complexes of DOTA-like Ligand Derivatives
Aime S, Anelli P, Botta M, Fedeli F, Grandi M, Paoli P, Uggeri F., 1992
LanthanideOrganic Framework of a Rigid Bis-Gd Complex: Composed by Carbonate Ions Spacers
Gunanathan C, Diskin-Posner Y, Milstein D., 2010
Pyclen Tri-n-butylphosphonate Ester as Potential Chelator for Targeted Radiotherapy: From Yttrium(III) Complexation to (90)Y Radiolabeling.
Le Fur M, Beyler M, Lepareur N, Fougere O, Platas-Iglesias C, Rousseaux O, Tripier R., Inorg Chem 55(16), 2016
PMID: 27486673
Synthesis, Characterization, and Crystal Structures of M(DO3A) (M = Iron, Gadolinium) and Na[M(DOTA)] (M = Fe, Yttrium, Gd)
Chang C, Francesconi Lynn, Malley Mary, Kumar Krishan, Gougoutas Jack, Tweedle Michael, Lee Daniel, Wilson Lon., 1993
Structural Variations Across the Lanthanide Series of Macrocyclic DOTA Complexes: Insights into the Design of Contrast Agents for Magnetic Resonance Imaging
Benetollo F, Bombieri G, Calabi L, Aime S, Botta M., 2003
The crystallized solvent could influence the lanthanide water bonding?
Bombieri G, Marchini N, Ciattini S, Mortillaro A, Aime S., 2006
Anomalous scattering by praseodymium, samarium and gadolinium and structures of their ethylenediaminetetraacetate (edta) salts
Templeton LK, Templeton DH, Zalkin A, Ruben HW., 1982
Thermodynamic and structural properties of Gd complexes with functionalized macrocyclic ligands based upon 1,4,7,10- tetraazacyclododecane
Bianchi A, Calabi L, Giorgi C, Losi P, Mariani P, Paoli P, Rossi P, Valtancoli B, Virtuani M., 2000
Probing the structure, conformation, and stereochemical exchange in a family of lanthanide complexes derived from tetrapyridyl-appended cyclen.
Natrajan LS, Khoabane NM, Dadds BL, Muryn CA, Pritchard RG, Heath SL, Kenwright AM, Kuprov I, Faulkner S., Inorg Chem 49(17), 2010
PMID: 20799736
Gadolinium complexation by a new DTPA-amide ligand. Amide oxygen coordination
Konings MS, Dow WC, Love DB, Raymond KN, Quay SC, Rocklage SM., 1990
Synthesis and crystal structure of a gadolinium(III) complex of a tetraimine schiff-base macrocycle: A potential contrast agent for magnetic resonance imaging
Bligh SWA, Choi N, Evagorou EG, Mcpartlin M, Cummins WJ, Kelly JD., 1992
Spin transition in [Fe(PM-BiA)(NCS)] studied by the electron paramagnetic resonance of the Mn ion
Daubric H, Kliava J, Guionneau P, Chasseau D, Ltard JF, Kahn O., 2000
Temperature-dependent coordination in E. coli manganese superoxide dismutase.
Tabares LC, Cortez N, Agalidis I, Un S., J. Am. Chem. Soc. 127(16), 2005
PMID: 15839704
Modelling spin Hamiltonian parameters of molecular nanomagnets
Gupta T, Rajaraman G., 2016
Interpretation of S-state ion E.P.R. spectra
Newman DJ, Urban W., 1975

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29617015
PubMed | Europe PMC

Suchen in

Google Scholar