A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm

Weber M, Wunderer J, Lengerer B, Pjeta R, Rodrigues M, Schärer L, Ladurner P, Ramm SA (2018)
BMC Evolutionary Biology 18(1): 81.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.05 MB
Weber, MichaelUniBi ; Wunderer, Julia; Lengerer, Birgit; Pjeta, Robert; Rodrigues, Marcelo; Schärer, Lukas; Ladurner, Peter; Ramm, Steven A.UniBi
Abstract / Bemerkung
Background Along with sperm, in many taxa ejaculates also contain large numbers of seminal fluid proteins (SFPs). SFPs and sperm are transferred to the mating partner, where they are thought to play key roles in mediating post-mating sexual selection. They modulate the partner’s behavior and physiology in ways that influence the reproductive success of both partners, thus potentially leading to sexual conflict. Despite the presumed general functional and evolutionary significance of SFPs, their identification and characterization has to date focused on just a few animal groups, predominantly insects and mammals. Moreover, until now seminal fluid profiling has mainly focused on species with separate sexes. Here we report a comprehensive screen for putative SFPs in the simultaneously hermaphroditic flatworm Macrostomum lignano. Results Based on existing transcriptomic data, we selected 150 transcripts known to be (a) predominantly expressed in the tail region of the worms, where the seminal fluid-producing prostate gland cells are located, and (b) differentially expressed in social environments differing in sperm competition level, strongly implying that they represent a phenotypically plastic aspect of male reproductive allocation in this species. For these SFP candidates, we then performed whole-mount in situ hybridization (ISH) experiments to characterize tissue-specific expression. In total, we identified 98 transcripts that exhibited prostate-specific expression, 76 of which we found to be expressed exclusively in the prostate gland cells; additional sites of expression for the remaining 22 included the testis or other gland cells. Bioinformatics analyses of the prostate-limited candidates revealed that at least 64 are predicted to be secretory proteins, making these especially strong candidates to be SFPs that are transferred during copulation. Conclusions Our study represents a first comprehensive analysis using a combination of transcriptomic and ISH screen data to identify SFPs based on transcript expression in seminal fluid-producing tissues. We thereby extend the range of taxa for which seminal fluid has been characterized to a flatworm species with a sequenced genome and for which several methods such as antibody staining, transgenesis and RNA interference have been established. Our data provide a basis for testing the functional and evolutionary significance of SFPs.
Seminal fluid; Flatworm; In situ hybridization; Prostate; Sex allocation; Sexual selection; Sperm competition; Sexual conflict; Allohormone
BMC Evolutionary Biology
Page URI


Weber M, Wunderer J, Lengerer B, et al. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evolutionary Biology. 2018;18(1): 81.
Weber, M., Wunderer, J., Lengerer, B., Pjeta, R., Rodrigues, M., Schärer, L., Ladurner, P., et al. (2018). A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evolutionary Biology, 18(1), 81. doi:10.1186/s12862-018-1187-0
Weber, M., Wunderer, J., Lengerer, B., Pjeta, R., Rodrigues, M., Schärer, L., Ladurner, P., and Ramm, S. A. (2018). A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evolutionary Biology 18:81.
Weber, M., et al., 2018. A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evolutionary Biology, 18(1): 81.
M. Weber, et al., “A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm”, BMC Evolutionary Biology, vol. 18, 2018, : 81.
Weber, M., Wunderer, J., Lengerer, B., Pjeta, R., Rodrigues, M., Schärer, L., Ladurner, P., Ramm, S.A.: A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm. BMC Evolutionary Biology. 18, : 81 (2018).
Weber, Michael, Wunderer, Julia, Lengerer, Birgit, Pjeta, Robert, Rodrigues, Marcelo, Schärer, Lukas, Ladurner, Peter, and Ramm, Steven A. “A targeted in situ hybridization screen identifies putative seminal fluid proteins in a simultaneously hermaphroditic flatworm”. BMC Evolutionary Biology 18.1 (2018): 81.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

A mechanism for temporary bioadhesion.
Wunderer J, Lengerer B, Pjeta R, Bertemes P, Kremser L, Lindner H, Ederth T, Hess MW, Stock D, Salvenmoser W, Ladurner P., Proc Natl Acad Sci U S A (), 2019
PMID: 30782790

111 References

Daten bereitgestellt von Europe PubMed Central.

Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila.
Peng J, Chen S, Busser S, Liu H, Honegger T, Kubli E., Curr. Biol. 15(3), 2005
PMID: 15694303

A, Behav Ecol Sociobiol 60(), 2006
Insect seminal fluid proteins: identification and function.
Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF., Annu. Rev. Entomol. 56(), 2011
PMID: 20868282
Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila.
Swanson WJ, Clark AG, Waldrip-Dail HM, Wolfner MF, Aquadro CF., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11404480
Pervasive adaptive evolution in primate seminal proteins.
Clark NL, Swanson WJ., PLoS Genet. 1(3), 2005
PMID: 16170411
Molecular evolution of seminal proteins in field crickets.
Andres JA, Maroja LS, Bogdanowicz SM, Swanson WJ, Harrison RG., Mol. Biol. Evol. 23(8), 2006
PMID: 16731569

AG, Genet 139(), 1995
Evolution of reproductive proteins from animals and plants.
Clark NL, Aagaard JE, Swanson WJ., Reproduction 131(1), 2006
PMID: 16388004
Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila.
Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS., Genetics 177(3), 2007
PMID: 18039869
Sexual selection and the adaptive evolution of mammalian ejaculate proteins.
Ramm SA, Oliver PL, Ponting CP, Stockley P, Emes RD., Mol. Biol. Evol. 25(1), 2007
PMID: 18032407
Sexual conflict and seminal fluid proteins: a dynamic landscape of sexual interactions.
Sirot LK, Wong A, Chapman T, Wolfner MF., Cold Spring Harb Perspect Biol 7(2), 2014
PMID: 25502515
The rapid evolution of reproductive proteins.
Swanson WJ, Vacquier VD., Nat. Rev. Genet. 3(2), 2002
PMID: 11836507
The seminal symphony: how to compose an ejaculate.
Perry JC, Sirot L, Wigby S., Trends Ecol. Evol. (Amst.) 28(7), 2013
PMID: 23582755
Cross-species comparison of Drosophila male accessory gland protein genes.
Mueller JL, Ravi Ram K, McGraw LA, Bloch Qazi MC, Siggia ED, Clark AG, Aquadro CF, Wolfner MF., Genetics 171(1), 2005
PMID: 15944345
Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins.
Kelleher ES, Watts TD, LaFlamme BA, Haynes PA, Markow TA., Insect Biochem. Mol. Biol. 39(5-6), 2009
PMID: 19328853
Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags.
Begun DJ, Lindfors HA, Thompson ME, Holloway AK., Genetics 172(3), 2005
PMID: 16361246
Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction.
Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC., Insect Biochem. Mol. Biol. 38(2), 2007
PMID: 18207079
Identification and characterization of seminal fluid proteins in the Asian tiger mosquito, Aedes albopictus.
Boes KE, Ribeiro JM, Wong A, Harrington LC, Wolfner MF, Sirot LK., PLoS Negl Trop Dis 8(6), 2014
PMID: 24945155

Proteomic analyses of male contributions to honey bee sperm storage and mating.
Collins AM, Caperna TJ, Williams V, Garrett WM, Evans JD., Insect Mol. Biol. 15(5), 2006
PMID: 17069630

DB, Behav Ecol Sociobiol 62(), 2008
Seminal fluid protein genes of the brown planthopper, Nilaparvata lugens.
Yu B, Li DT, Lu JB, Zhang WX, Zhang CX., BMC Genomics 17(), 2016
PMID: 27538518
Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius.
Reinhardt K, Naylor R, Siva-Jothy MT., PLoS ONE 6(7), 2011
PMID: 21779378
Identification of ejaculated proteins in the house mouse (Mus domesticus) via isotopic labeling.
Dean MD, Findlay GD, Hoopmann MR, Wu CC, MacCoss MJ, Swanson WJ, Nachman MW., BMC Genomics 12(), 2011
PMID: 21663664
Components of stallion seminal plasma and the effects of seminal plasma on sperm longevity.
Kareskoski M, Katila T., Anim. Reprod. Sci. 107(3-4), 2008
PMID: 18556156
Fertility-associated proteins in Holstein bull seminal plasma.
Killian GJ, Chapman DA, Rogowski LA., Biol. Reprod. 49(6), 1993
PMID: 8286602
Secretory activity of boar seminal vesicle glands.
Strzezek J., Reprod Biol 2(3), 2002
PMID: 14666148
A comprehensive characterization of the peptide and protein constituents of human seminal fluid.
Fung KY, Glode LM, Green S, Duncan MW., Prostate 61(2), 2004
PMID: 15305340

G, 2005

Y, Can J Zool 91(), 2013
The snail's love-dart delivers mucus to increase paternity.
Chase R, Blanchard KC., Proc. Biol. Sci. 273(1593), 2006
PMID: 16777740
Receipt of seminal fluid proteins causes reduction of male investment in a simultaneous hermaphrodite.
Nakadera Y, Swart EM, Hoffer JN, den Boon O, Ellers J, Koene JM., Curr. Biol. 24(8), 2014
PMID: 24684934

L, Encycl Evol Biol Acad Press 2(), 2016
Simultaneous hermaphroditism and sexual selection.
Charnov EL., Proc. Natl. Acad. Sci. U.S.A. 76(5), 1979
PMID: 16592656
Evolution: don't be so butch, dear!
Scharer L., Curr. Biol. 24(8), 2014
PMID: 24735851
Male accessory gland protein reduces egg laying in a simultaneous hermaphrodite.
Koene JM, Sloot W, Montagne-Wajer K, Cummins SF, Degnan BM, Smith JS, Nagle GT, ter Maat A., PLoS ONE 5(4), 2010
PMID: 20404934

YA, Anim Behav 33(), 1985

JNA, Anim Behav 84(), 2012

JM, Anim Biol 59(), 2009
Sexual conflict in hermaphrodites.
Scharer L, Janicke T, Ramm SA., Cold Spring Harb Perspect Biol 7(1), 2014
PMID: 25237131

NK, 1998

P, J Zool Syst Evol Res 43(), 2005
Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano.
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delas MJ, Battistoni G, El Demerdash O, Falciatori I, Vizoso DB, Smith AD, Ladurner P, Scharer L, McCombie WR, Hannon GJ, Schatz M., Proc. Natl. Acad. Sci. U.S.A. 112(40), 2015
PMID: 26392545
Phenotypically plastic adjustment of sex allocation in a simultaneous hermaphrodite.
Scharer L, Ladurner P., Proc. Biol. Sci. 270(1518), 2003
PMID: 12803908
Resource-dependent sex-allocation in a simultaneous hermaphrodite.
Vizoso DB, Scharer L., J. Evol. Biol. 20(3), 2007
PMID: 17465915
Phenotypically flexible sex allocation in a simultaneous hermaphrodite.
Brauer VS, Scharer L, Michiels NK., Evolution 61(1), 2007
PMID: 17300440
Sex allocation adjustment to mating group size in a simultaneous hermaphrodite.
Janicke T, Marie-Orleach L, De Mulder K, Berezikov E, Ladurner P, Vizoso DB, Scharer L., Evolution 67(11), 2013
PMID: 24152005

T, Behav Ecol Sociobiol 64(), 2010

EL, Mar Biol Lett 1(), 1980
The theory of sex allocation.
Charnov EL., Monogr Popul Biol 18(), 1982
PMID: 7144766

L, Anim Behav 85(), 2013

L, Mar Biol 145(), 2004
Mating behavior and the evolution of sperm design.
Scharer L, Littlewood DT, Waeschenbach A, Yoshida W, Vizoso DB., Proc. Natl. Acad. Sci. U.S.A. 108(4), 2011
PMID: 21220334
Goings-on inside a worm: functional hypotheses derived from sexual conflict thinking
VIZOSO DITAB, RIEGER GUNDE, SCHARER LUKAS., Biol. J. Linn. Soc. Lond. 99(2), 2010
PMID: IND44316002
Quantifying episodes of sexual selection: Insights from a transparent worm with fluorescent sperm.
Marie-Orleach L, Janicke T, Vizoso DB, David P, Scharer L., Evolution 70(2), 2016
PMID: 26787006

Female x male interactions in Drosophila sperm competition.
Clark AG, Begun DJ, Prout T., Science 283(5399), 1999
PMID: 9880253
Sperm-female coevolution in Drosophila.
Miller GT, Pitnick S., Science 298(5596), 2002
PMID: 12424377
Positional RNA-Seq identifies candidate genes for phenotypic engineering of sexual traits.
Arbore R, Sekii K, Beisel C, Ladurner P, Berezikov E, Scharer L., Front. Zool. 12(), 2015
PMID: 26146508
Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology.
Zadesenets KS, Vizoso DB, Schlatter A, Konopatskaia ID, Berezikov E, Scharer L, Rubtsov NB., PLoS ONE 11(10), 2016
PMID: 27755577

Efficient transgenesis and annotated genome sequence of the regenerative flatworm model Macrostomum lignano.
Wudarski J, Simanov D, Ustyantsev K, de Mulder K, Grelling M, Grudniewska M, Beltman F, Glazenburg L, Demircan T, Wunderer J, Qi W, Vizoso DB, Weissert PM, Olivieri D, Mouton S, Guryev V, Aboobaker A, Scharer L, Ladurner P, Berezikov E., Nat Commun 8(1), 2017
PMID: 29242515
Production and characterisation of cell- and tissue-specific monoclonal antibodies for the flatworm Macrostomum sp.
Ladurner P, Pfister D, Seifarth C, Scharer L, Mahlknecht M, Salvenmoser W, Gerth R, Marx F, Rieger R., Histochem. Cell Biol. 123(1), 2004
PMID: 15551153
Primer3--new capabilities and interfaces.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG., Nucleic Acids Res. 40(15), 2012
PMID: 22730293
Enhancements and modifications of primer design program Primer3.
Koressaar T, Remm M., Bioinformatics 23(10), 2007
PMID: 17379693
Biological adhesion of the flatworm Macrostomum lignano relies on a duo-gland system and is mediated by a cell type-specific intermediate filament protein.
Lengerer B, Pjeta R, Wunderer J, Rodrigues M, Arbore R, Scharer L, Berezikov E, Hess MW, Pfaller K, Egger B, Obwegeser S, Salvenmoser W, Ladurner P., Front. Zool. 11(1), 2014
PMID: 24520881
Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M., Bioinformatics 21(18), 2005
PMID: 16081474
High-throughput functional annotation and data mining with the Blast2GO suite.
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A., Nucleic Acids Res. 36(10), 2008
PMID: 18445632
SignalP 4.0: discriminating signal peptides from transmembrane regions.
Petersen TN, Brunak S, von Heijne G, Nielsen H., Nat. Methods 8(10), 2011
PMID: 21959131
Feature-based prediction of non-classical and leaderless protein secretion.
Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S., Protein Eng. Des. Sel. 17(4), 2004
PMID: 15115854
Prediction of human protein function from post-translational modifications and localization features.
Jensen LJ, Gupta R, Blom N, Devos D, Tamames J, Kesmir C, Nielsen H, Staerfeldt HH, Rapacki K, Workman C, Andersen CA, Knudsen S, Krogh A, Valencia A, Brunak S., J. Mol. Biol. 319(5), 2002
PMID: 12079362
Prediction of human protein function according to Gene Ontology categories.
Jensen LJ, Gupta R, Staerfeldt HH, Brunak S., Bioinformatics 19(5), 2003
PMID: 12651722
Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL., J. Mol. Biol. 305(3), 2001
PMID: 11152613
A hidden Markov model for predicting transmembrane helices in protein sequences.
Sonnhammer EL, von Heijne G, Krogh A., Proc Int Conf Intell Syst Mol Biol 6(), 1998
PMID: 9783223
Organ specific gene expression in the regenerating tail of Macrostomum lignano.
Lengerer B, Wunderer J, Pjeta R, Carta G, Kao D, Aboobaker A, Beisel C, Berezikov E, Salvenmoser W, Ladurner P., Dev. Biol. 433(2), 2017
PMID: 28757111

A combined transmembrane topology and signal peptide prediction method.
Kall L, Krogh A, Sonnhammer EL., J. Mol. Biol. 338(5), 2004
PMID: 15111065
Searching for candidate speciation genes using a proteomic approach: seminal proteins in field crickets.
Andres JA, Maroja LS, Harrison RG., Proc. Biol. Sci. 275(1646), 2008
PMID: 18495616
Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating.
Findlay GD, Yi X, Maccoss MJ, Swanson WJ., PLoS Biol. 6(7), 2008
PMID: 18666829
Towards a semen proteome of the dengue vector mosquito: protein identification and potential functions.
Sirot LK, Hardstone MC, Helinski ME, Ribeiro JM, Kimura M, Deewatthanawong P, Wolfner MF, Harrington LC., PLoS Negl Trop Dis 5(3), 2011
PMID: 21423647
Sperm competition risk drives plasticity in seminal fluid composition.
Ramm SA, Edward DA, Claydon AJ, Hammond DE, Brownridge P, Hurst JL, Beynon RJ, Stockley P., BMC Biol. 13(), 2015
PMID: 26507392
Seminal fluid protein allocation and male reproductive success.
Wigby S, Sirot LK, Linklater JR, Buehner N, Calboli FC, Bretman A, Wolfner MF, Chapman T., Curr. Biol. 19(9), 2009
PMID: 19361995
Proteomics. Tissue-based map of the human proteome.
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F., Science 347(6220), 2015
PMID: 25613900
Flatworm stem cells and the germ line: developmental and evolutionary implications of macvasa expression in Macrostomum lignano.
Pfister D, De Mulder K, Hartenstein V, Kuales G, Borgonie G, Marx F, Morris J, Ladurner P., Dev. Biol. 319(1), 2008
PMID: 18405892
Melav2, an elav-like gene, is essential for spermatid differentiation in the flatworm Macrostomum lignano.
Sekii K, Salvenmoser W, De Mulder K, Scharer L, Ladurner P., BMC Dev. Biol. 9(), 2009
PMID: 19995429
Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano.
Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P., Dev. Biol. 357(1), 2011
PMID: 21740899
Phenotypic engineering of sperm-production rate confirms evolutionary predictions of sperm competition theory.
Sekii K, Vizoso DB, Kuales G, De Mulder K, Ladurner P, Scharer L., Proc. Biol. Sci. 280(1757), 2013
PMID: 23446521
Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection.
Marie-Orleach L, Janicke T, Vizoso DB, Eichmann M, Scharer L., BMC Evol. Biol. 14(), 2014
PMID: 24980980
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29848299
PubMed | Europe PMC

Suchen in

Google Scholar