Revisiting the tree edit distance and its backtracing: A tutorial
Paaßen B (Draft)
arXiv:1805.06869.
Preprint
| Entwurf | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Almost 30 years ago, Zhang and Shasha published a seminal paper describing an
efficient dynamic programming algorithm computing the tree edit distance, that
is, the minimum number of node deletions, insertions, and replacements that are
necessary to transform one tree into another. Since then, the tree edit
distance has had widespread applications, for example in bioinformatics and
intelligent tutoring systems. However, the original paper of Zhang and Shasha
can be challenging to read for newcomers and it does not describe how to
efficiently infer the optimal edit script.
In this contribution, we provide a comprehensive tutorial to the tree edit
distance algorithm of Zhang and Shasha. We further prove metric properties of
the tree edit distance, and describe efficient algorithms to infer the cheapest
edit script, as well as a summary of all cheapest edit scripts between two
trees.
Erscheinungsjahr
2018
Zeitschriftentitel
arXiv:1805.06869
Page URI
https://pub.uni-bielefeld.de/record/2919918
Zitieren
Paaßen B. Revisiting the tree edit distance and its backtracing: A tutorial. arXiv:1805.06869. Draft.
Paaßen, B. (Draft). Revisiting the tree edit distance and its backtracing: A tutorial. arXiv:1805.06869
Paaßen, Benjamin. Draft. “Revisiting the tree edit distance and its backtracing: A tutorial”. arXiv:1805.06869.
Paaßen, B. (Draft). Revisiting the tree edit distance and its backtracing: A tutorial. arXiv:1805.06869.
Paaßen, B., Draft. Revisiting the tree edit distance and its backtracing: A tutorial. arXiv:1805.06869.
B. Paaßen, “Revisiting the tree edit distance and its backtracing: A tutorial”, arXiv:1805.06869, Draft.
Paaßen, B.: Revisiting the tree edit distance and its backtracing: A tutorial. arXiv:1805.06869. (Draft).
Paaßen, Benjamin. “Revisiting the tree edit distance and its backtracing: A tutorial”. arXiv:1805.06869 (Draft).