Kinetics in the real world: linking molecules, processes, and systems

Kohse-Höinghaus K, Troe J, Grabow J-U, Olzmann M, Friedrichs G, Hungenberg K-D (2018)
Physical Chemistry Chemical Physics 20(16): 10561-10568.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Kohse-Höinghaus, KatharinaUniBi; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter
Erscheinungsjahr
2018
Zeitschriftentitel
Physical Chemistry Chemical Physics
Band
20
Ausgabe
16
Seite(n)
10561-10568
ISSN
1463-9076
Page URI
https://pub.uni-bielefeld.de/record/2919871

Zitieren

Kohse-Höinghaus K, Troe J, Grabow J-U, Olzmann M, Friedrichs G, Hungenberg K-D. Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics. 2018;20(16):10561-10568.
Kohse-Höinghaus, K., Troe, J., Grabow, J. - U., Olzmann, M., Friedrichs, G., & Hungenberg, K. - D. (2018). Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics, 20(16), 10561-10568. doi:10.1039/c8cp90054j
Kohse-Höinghaus, K., Troe, J., Grabow, J. - U., Olzmann, M., Friedrichs, G., and Hungenberg, K. - D. (2018). Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics 20, 10561-10568.
Kohse-Höinghaus, K., et al., 2018. Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics, 20(16), p 10561-10568.
K. Kohse-Höinghaus, et al., “Kinetics in the real world: linking molecules, processes, and systems”, Physical Chemistry Chemical Physics, vol. 20, 2018, pp. 10561-10568.
Kohse-Höinghaus, K., Troe, J., Grabow, J.-U., Olzmann, M., Friedrichs, G., Hungenberg, K.-D.: Kinetics in the real world: linking molecules, processes, and systems. Physical Chemistry Chemical Physics. 20, 10561-10568 (2018).
Kohse-Höinghaus, Katharina, Troe, Jürgen, Grabow, Jens-Uwe, Olzmann, Matthias, Friedrichs, Gernot, and Hungenberg, Klaus-Dieter. “Kinetics in the real world: linking molecules, processes, and systems”. Physical Chemistry Chemical Physics 20.16 (2018): 10561-10568.

61 References

Daten bereitgestellt von Europe PubMed Central.


Arrhenius, Z. Phys. Chem. 4(), 1889

Bodenstein, Ber. Dtsch. Chem. Ges. 13(), 1893

Bodenstein, Chem. Rev. 7(), 1930

AUTHOR UNKNOWN, 0

Marcus, Angew. Chem., Int. Ed. Engl. 32(), 1993

Cheng, J. Chem. Phys. 105(), 1996
Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy.
Kettling U, Koltermann A, Schwille P, Eigen M., Proc. Natl. Acad. Sci. U.S.A. 95(4), 1998
PMID: 9465029

Barrie, Nature 334(), 1988

Vogt, Nature 383(), 1996
Reactions at surfaces: from atoms to complexity (Nobel Lecture).
Ertl G., Angew. Chem. Int. Ed. Engl. 47(19), 2008
PMID: 18357601

Rayment, Nature 315(), 1985

Baerns, J. Catal. 232(), 2005
Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.
Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA., Nature 447(7147), 2007
PMID: 17581580
Mechanism and microkinetics of the Fischer-Tropsch reaction.
van Santen RA, Markvoort AJ, Filot IA, Ghouri MM, Hensen EJ., Phys Chem Chem Phys 15(40), 2013
PMID: 24030478

McCloskey, J. Phys. Chem. C 116(), 2012

Glarborg, Prog. Energy Combust. Sci. 67(), 2018
Aging of organic aerosol: bridging the gap between laboratory and field studies.
Rudich Y, Donahue NM, Mentel TF., Annu Rev Phys Chem 58(), 2007
PMID: 17090227
Formation of secondary organic aerosols through photooxidation of isoprene.
Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W., Science 303(5661), 2004
PMID: 14976309
Unexpected epoxide formation in the gas-phase photooxidation of isoprene.
Paulot F, Crounse JD, Kjaergaard HG, Kurten A, St Clair JM, Seinfeld JH, Wennberg PO., Science 325(5941), 2009
PMID: 19661425
Negative Ions in Space.
Millar TJ, Walsh C, Field TA., Chem. Rev. 117(3), 2017
PMID: 28112897
Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycyclic aromatic hydrocarbons) in the interstellar medium.
Parker DS, Zhang F, Kim YS, Kaiser RI, Landera A, Kislov VV, Mebel AM, Tielens AG., Proc. Natl. Acad. Sci. U.S.A. 109(1), 2011
PMID: 22198769

Turányi, 2014

Lu, Prog. Energy Combust. Sci. 35(), 2009

Healy, Energy Fuels 24(), 2010

Pilling, Proc. Combust. Inst. 32(), 2009

Miller, Proc. Combust. Inst. 30(), 2005

Ranzi, Combust. Flame 162(), 2015

Merchant, Combust. Flame 162(), 2015
Experimental confirmation of the low-temperature oxidation scheme of alkanes.
Battin-Leclerc F, Herbinet O, Glaude PA, Fournet R, Zhou Z, Deng L, Guo H, Xie M, Qi F., Angew. Chem. Int. Ed. Engl. 49(18), 2010
PMID: 20391420

Qi, Proc. Combust. Inst. 34(), 2013
Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds.
Wang Z, Popolan-Vaida DM, Chen B, Moshammer K, Mohamed SY, Wang H, Sioud S, Raji MA, Kohse-Hoinghaus K, Hansen N, Dagaut P, Leone SR, Sarathy SM., Proc. Natl. Acad. Sci. U.S.A. 114(50), 2017
PMID: 29183984
PROGRESS IN DETAILED KINETIC MODELING OF THE COMBUSTION OF OXYGENATED COMPONENTS OF BIOFUELS.
Sy Tran L, Sirjean B, Glaude PA, Fournet R, Battin-Leclerc F., Energy (Oxf) 43(1), 2012
PMID: 23700355
Biofuel combustion chemistry: from ethanol to biodiesel.
Kohse-Hoinghaus K, Osswald P, Cool TA, Kasper T, Hansen N, Qi F, Westbrook CK, Westmoreland PR., Angew. Chem. Int. Ed. Engl. 49(21), 2010
PMID: 20446278

Sarathy, Prog. Energy Combust. Sci. 44(), 2014
Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production.
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Hoinghaus K., Angew. Chem. Int. Ed. Engl. 56(20), 2017
PMID: 28185380

Friedrichs, Phys. Chem. Chem. Phys. 4(), 2002
Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.
Faßheber N, Friedrichs G, Marshall P, Glarborg P., J Phys Chem A 119(28), 2015
PMID: 25611968

Wang, Proc. Combust. Inst. 33(), 2011

Haynes, Prog. Energy Combust. Sci. 7(), 1981

Michelsen, Proc. Combust. Inst. 36(), 2017

Michelsen, Prog. Energy Combust. Sci. 51(), 2015
Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.
Hoyermann K, Mauß F, Olzmann M, Welz O, Zeuch T., Phys Chem Chem Phys 19(28), 2017
PMID: 28681879

Crutzen, Tellus 26(), 1973

Atkinson, J. Phys. Chem. Ref. Data 18(), 1989
Oxidation of atmospheric SO2 by products of the ozone-olefin reaction.
Cox RA, Penkett SA., Nature 230(5292), 1971
PMID: 5549405
Direct kinetic measurements of Criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂.
Welz O, Savee JD, Osborn DL, Vasu SS, Percival CJ, Shallcross DE, Taatjes CA., Science 335(6065), 2012
PMID: 22246773

Bond, J. Geophys. Res.: Atmos. 118(), 2013

Myhre, 2013

Ammann, Atmos. Chem. Phys. 13(), 2013
Chemistry and release of gases from the surface ocean.
Carpenter LJ, Nightingale PD., Chem. Rev. 115(10), 2015
PMID: 25811324
Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.
Berndt T, Kaethner R, Voigtlander J, Stratmann F, Pfeifle M, Reichle P, Sipila M, Kulmala M, Olzmann M., Phys Chem Chem Phys 17(30), 2015
PMID: 26159709

Bauer, Macromol. Chem. Phys. 211(), 2010

Salciccioli, Chem. Eng. Sci. 66(), 2011

Brukh, Chem. Phys. Lett. 424(), 2006
Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
Ito Y, Christodoulou C, Nardi MV, Koch N, Sachdev H, Mullen K., ACS Nano 8(4), 2014
PMID: 24641621
Experimental and modelling study of the multichannel thermal dissociations of CH3F and CH2F.
Cobos CJ , Knight G , Solter L , Tellbach E , Troe J ., Phys Chem Chem Phys 20(4), 2018
PMID: 29319102

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29616689
PubMed | Europe PMC

Suchen in

Google Scholar