Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling
Huebner T, Martens U, Walowski J, Muenzenberg M, Thomas A, Reiss G, Kuschel T (2018)
Journal of Physics D: Applied Physics 51(22): 224006.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Huebner, Torsten;
Martens, Ulrike;
Walowski, Jakob;
Muenzenberg, Markus;
Thomas, AndyUniBi ;
Reiss, GünterUniBi ;
Kuschel, TimoUniBi
Abstract / Bemerkung
In general, it is difficult to access the thermal conductivity of thin insulating films experimentally by electrical means. Here, we present a new approach utilizing the tunnel magneto-Seebeck effect (TMS) in combination with finite-element modeling (FEM). We detect the laser-induced TMS and the absolute thermovoltage of laser-heated magnetic tunnel
junctions with 2.6 nm thin barriers of MgAl2O4 (MAO) and MgO, respectively. A second measurement of the absolute thermovoltage after a dielectric breakdown of the barrier grants insight into the remaining thermovoltage of the stack. Thus, the pure TMS without any parasitic Nernst contributions from the leads can be identified. In combination with FEM
via COMSOL, we are able to extract values for the thermal conductivity of MAO (0.7 W (K · m)−1) and MgO (5.8 W (K · m)−1), which are in very good agreement with theoretical predictions. Our method provides a new promising way to extract the experimentally challenging parameter of the thermal conductivity of thin insulating films.
Erscheinungsjahr
2018
Zeitschriftentitel
Journal of Physics D: Applied Physics
Band
51
Ausgabe
22
Art.-Nr.
224006
ISSN
0022-3727
eISSN
1361-6463
Page URI
https://pub.uni-bielefeld.de/record/2919755
Zitieren
Huebner T, Martens U, Walowski J, et al. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling. Journal of Physics D: Applied Physics. 2018;51(22): 224006.
Huebner, T., Martens, U., Walowski, J., Muenzenberg, M., Thomas, A., Reiss, G., & Kuschel, T. (2018). Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling. Journal of Physics D: Applied Physics, 51(22), 224006. https://doi.org/10.1088/1361-6463/aabfb3
Huebner, Torsten, Martens, Ulrike, Walowski, Jakob, Muenzenberg, Markus, Thomas, Andy, Reiss, Günter, and Kuschel, Timo. 2018. “Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling”. Journal of Physics D: Applied Physics 51 (22): 224006.
Huebner, T., Martens, U., Walowski, J., Muenzenberg, M., Thomas, A., Reiss, G., and Kuschel, T. (2018). Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling. Journal of Physics D: Applied Physics 51:224006.
Huebner, T., et al., 2018. Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling. Journal of Physics D: Applied Physics, 51(22): 224006.
T. Huebner, et al., “Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling”, Journal of Physics D: Applied Physics, vol. 51, 2018, : 224006.
Huebner, T., Martens, U., Walowski, J., Muenzenberg, M., Thomas, A., Reiss, G., Kuschel, T.: Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling. Journal of Physics D: Applied Physics. 51, : 224006 (2018).
Huebner, Torsten, Martens, Ulrike, Walowski, Jakob, Muenzenberg, Markus, Thomas, Andy, Reiss, Günter, and Kuschel, Timo. “Thermal conductivity of thin insulating films determined by tunnel magneto-Seebeck effect measurements and finite-element modeling”. Journal of Physics D: Applied Physics 51.22 (2018): 224006.
Material in PUB:
Publikation, die diesen PUB Eintrag enthält
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in