Spiking Elementary Motion Detector in Neuromorphic Systems

Milde MB, Bertrand O, Ramachandran H, Egelhaaf M, Chicca E (2018)
Neural Computation 30(9): 2384-2417.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Restricted Milde_etal18.pdf 2.66 MB
Erscheinungsjahr
2018
Zeitschriftentitel
Neural Computation
Band
30
Ausgabe
9
Seite(n)
2384-2417
ISSN
0899-7667
eISSN
1530-888X
Page URI
https://pub.uni-bielefeld.de/record/2919435

Zitieren

Milde MB, Bertrand O, Ramachandran H, Egelhaaf M, Chicca E. Spiking Elementary Motion Detector in Neuromorphic Systems. Neural Computation. 2018;30(9):2384-2417.
Milde, M. B., Bertrand, O., Ramachandran, H., Egelhaaf, M., & Chicca, E. (2018). Spiking Elementary Motion Detector in Neuromorphic Systems. Neural Computation, 30(9), 2384-2417. doi:10.1162/neco_a_01112
Milde, Moritz B., Bertrand, Olivier, Ramachandran, Harshawardhan, Egelhaaf, Martin, and Chicca, Elisabetta. 2018. “Spiking Elementary Motion Detector in Neuromorphic Systems”. Neural Computation 30 (9): 2384-2417.
Milde, M. B., Bertrand, O., Ramachandran, H., Egelhaaf, M., and Chicca, E. (2018). Spiking Elementary Motion Detector in Neuromorphic Systems. Neural Computation 30, 2384-2417.
Milde, M.B., et al., 2018. Spiking Elementary Motion Detector in Neuromorphic Systems. Neural Computation, 30(9), p 2384-2417.
M.B. Milde, et al., “Spiking Elementary Motion Detector in Neuromorphic Systems”, Neural Computation, vol. 30, 2018, pp. 2384-2417.
Milde, M.B., Bertrand, O., Ramachandran, H., Egelhaaf, M., Chicca, E.: Spiking Elementary Motion Detector in Neuromorphic Systems. Neural Computation. 30, 2384-2417 (2018).
Milde, Moritz B., Bertrand, Olivier, Ramachandran, Harshawardhan, Egelhaaf, Martin, and Chicca, Elisabetta. “Spiking Elementary Motion Detector in Neuromorphic Systems”. Neural Computation 30.9 (2018): 2384-2417.
Volltext(e)
Name
Milde_etal18.pdf 2.66 MB
Access Level
Restricted Closed Access
Zuletzt Hochgeladen
2019-09-06T09:18:59Z
MD5 Prüfsumme
70a84465a3e5fb2b5630d68416fa9c5a


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

94 References

Daten bereitgestellt von Europe PubMed Central.


Address, The address-event representation communication protocol AER 0.02 (), 1993
The mechanism of directionally selective units in rabbit's retina.
Barlow HB, Levick WR., J. Physiol. (Lond.) 178(3), 1965
PMID: 5827909
Synaptic dynamics in analog VLSI.
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003

AUTHOR UNKNOWN, 0
Event-based visual flow.
Benosman R, Clercq C, Lagorce X, Ieng SH, Bartolozzi C., IEEE Trans Neural Netw Learn Syst 25(2), 2014
PMID: 24807038
Asynchronous frameless event-based optical flow.
Benosman R, Ieng SH, Clercq C, Bartolozzi C, Srinivasan M., Neural Netw 27(), 2011
PMID: 22154354
Common circuit design in fly and mammalian motion vision.
Borst A, Helmstaedter M., Nat. Neurosci. 18(8), 2015
PMID: 26120965

AUTHOR UNKNOWN, 0
On event-based optical flow detection.
Brosch T, Tschechne S, Neumann H., Front Neurosci 9(), 2015
PMID: 25941470

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Chen, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected (), 2016

Clady, Frontiers in Neuroscience 8(9), 2014

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

DVS, Product of Inilabs: Dynamic vision sensor (), 2009

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey.
Foster KH, Gaska JP, Nagler M, Pollen DA., J. Physiol. (Lond.) 365(), 1985
PMID: 4032318

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Gibson, 1950

Gibson, 1979

Giulioni, Frontiers in Neuroscience 10(9), 2016
Large-scale modeling - a tool for conquering the complexity of the brain.
Djurfeldt M, Ekeberg O, Lansner A., Front Neuroinform 2(), 2008
PMID: 18974793

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Horiuchi, 1994

Horiuchi, 1991

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
Indiveri G, Chicca E, Douglas R., IEEE Trans Neural Netw 17(1), 2006
PMID: 16526488

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Illusory motion in visual displays.
Lelkens AM, Koenderink JJ., Vision Res. 24(9), 1984
PMID: 6506473

AUTHOR UNKNOWN, 0

Liu, Block-matching optical flow for dynamic vision sensor-algorithm and FPGA implementation (), 2017

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

Lucas, 1981

Mahowald, VLSI analogs of neuronal visual processing: A synthesis of form and function (), 1992

AUTHOR UNKNOWN, 0
A directional tuning map of Drosophila elementary motion detectors.
Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A., Nature 500(7461), 2013
PMID: 23925246

AUTHOR UNKNOWN, 0
Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses.
Markram H, Pikus D, Gupta A, Tsodyks M., Neuropharmacology 37(4-5), 1998
PMID: 9704990

AUTHOR UNKNOWN, 0
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
Milde MB, Blum H, Dietmuller A, Sumislawska D, Conradt J, Indiveri G, Sandamirskaya Y., Front Neurorobot 11(), 2017
PMID: 28747883

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The problem of home choice in skyline-based homing.
Muller MM, Bertrand OJN, Differt D, Egelhaaf M., PLoS ONE 13(3), 2018
PMID: 29522546
Neuroimaging of direction-selective mechanisms for second-order motion.
Nishida S, Sasaki Y, Murakami I, Watanabe T, Tootell RB., J. Neurophysiol. 90(5), 2003
PMID: 12917391

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A model of speed tuning in MT neurons.
Perrone JA, Thiele A., Vision Res. 42(8), 2002
PMID: 11934454

Posch, 2010

AUTHOR UNKNOWN, 0

Raggedstone2, Raggedstone2 with spartan 6 FPGA (), 2017

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Visual pathways serving motion detection in the mammalian brain.
Rokszin A, Markus Z, Braunitzer G, Berenyi A, Benedek G, Nagy A., Sensors (Basel) 10(4), 2010
PMID: 22319295

Rueckauer, Frontiers in Neuroscience 10(176), 2016
Optic flow-based collision-free strategies: From insects to robots.
Serres JR, Ruffier F., Arthropod Struct Dev 46(5), 2017
PMID: 28655645

AUTHOR UNKNOWN, 0

Stefanini, Frontiers in Neuroinformatics 8(73), 2014
Flies see second-order motion.
Theobald JC, Duistermars BJ, Ringach DL, Frye MA., Curr. Biol. 18(11), 2008
PMID: 18522814
Spike-based strategies for rapid processing.
Thorpe S, Delorme A, Van Rullen R., Neural Netw 14(6-7), 2001
PMID: 11665765
Speed of processing in the human visual system.
Thorpe S, Fize D, Marlot C., Nature 381(6582), 1996
PMID: 8632824
Spike times make sense.
VanRullen R, Guyonneau R, Thorpe SJ., Trends Neurosci. 28(1), 2005
PMID: 15626490

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30021082
PubMed | Europe PMC

Suchen in

Google Scholar