Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil

Wagner C, Bonte A, Bruehl L, Niehaus K, Bednarz H, Matthaeus B (2018)
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 98(6): 2147-2155.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Wagner, Claudia; Bonte, Anja; Bruehl, Ludger; Niehaus, KarstenUniBi; Bednarz, Hanna; Matthaeus, Bertrand
Abstract / Bemerkung
BACKGROUNDMicro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. RESULTSFrom four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. CONCLUSIONMicro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. (c) 2017 Society of Chemical Industry
Stichworte
micro-organisms; rapeseed; SPME-GC-MS; virgin rapeseed oils; volatile; compounds; storage
Erscheinungsjahr
2018
Zeitschriftentitel
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE
Band
98
Ausgabe
6
Seite(n)
2147-2155
ISSN
0022-5142
eISSN
1097-0010
Page URI
https://pub.uni-bielefeld.de/record/2919299

Zitieren

Wagner C, Bonte A, Bruehl L, Niehaus K, Bednarz H, Matthaeus B. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE. 2018;98(6):2147-2155.
Wagner, C., Bonte, A., Bruehl, L., Niehaus, K., Bednarz, H., & Matthaeus, B. (2018). Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 98(6), 2147-2155. doi:10.1002/jsfa.8699
Wagner, C., Bonte, A., Bruehl, L., Niehaus, K., Bednarz, H., and Matthaeus, B. (2018). Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 98, 2147-2155.
Wagner, C., et al., 2018. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 98(6), p 2147-2155.
C. Wagner, et al., “Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil”, JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, vol. 98, 2018, pp. 2147-2155.
Wagner, C., Bonte, A., Bruehl, L., Niehaus, K., Bednarz, H., Matthaeus, B.: Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE. 98, 2147-2155 (2018).
Wagner, Claudia, Bonte, Anja, Bruehl, Ludger, Niehaus, Karsten, Bednarz, Hanna, and Matthaeus, Bertrand. “Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil”. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 98.6 (2018): 2147-2155.

52 References

Daten bereitgestellt von Europe PubMed Central.

Why is it so difficult to produce high-quality virgin rapeseed oil for human consumption?
Matthäus, Eur J Lipid Sci Technol 110(), 2008

Matthäus, 2009
Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria
Dickschat, Eur J Org Chem 2005(), 2005
Bacterial volatiles: the smell of small organisms.
Schulz S, Dickschat JS., Nat Prod Rep 24(4), 2007
PMID: 17653361
Fungal volatile organic compounds: A review with emphasis on their biotechnological potential
Morath, Fungal Biol Rev 26(), 2012
Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions.
Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L., Environ. Microbiol. 13(11), 2011
PMID: 21933319
Characterization of volatile metabolites from 47 Penicillium taxa.
Larsen TO, Frisvad JC., Mycol. Res. 99(10), 1995
PMID: IND20518290
Colour of rapeseed (Brassica napus) surface and contamination by fungi during storage of dry and wet seeds
Tanska M, Konopka I, Korzeniewska E, Rotkiewicz D., International journal of food science and technology. 46(11), 2011
PMID: IND44683532
Relationships between seed development stage, germination, occurrence and location of fungi in oilseed rape (Brassica napus ssp. oleifera L.) seeds and the presence of Alternaria and Cladosporium spp. spores in the air
Szopinska, EJPAU 10(), 2007
Mycological characterization of rape seeds depending on storage conditions
Kornillowicz-Kowalska, Acta Agrophysica 37(), 2000
Effects of genotype and environmental factors on rapeseed contamination with mycotoxins and mycotoxin-producing fungi
Brazauskienė, Ekologija 3(), 2006
Changes in the volatile and sensory profile of virgin olive oil as a function of olive fruits mould process
Biasone, Riv Ital Sostanze Gr 89(), 2012
Fungal volatile organic compounds (FVOCs) contribution in olive oil aroma and volatile biogenesis during olive preprocessing storage
Gharbi I, Manel Issaoui , Dorsaf Haddadi , Soukaina Gheith , Amel Rhim , Imed Cheraief , Mohamed Nour , Guido Flamini , Mohamed Hammami ., J. Food Biochem. 41(4), 2017
PMID: IND605763596
Volatile Organic Compounds of Whole-Grain Soft Winter Wheat
Ji Taehyun, Baik Byung-Kee , Kang Moonseok ., Cereal chemistry. 94(3), 2017
PMID: IND605683903
Phlyogenetic analysis of microial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches
Kaiser, Microb Ecol 107(), 2001
Bacteria from the rhizosphere and roots of Brassica napus influence its root growth promotion by Phyllobacterium brassicacearum
Larcher, Acta Botanica Gallica 155(), 2008
Bacterial communities associated with Brassica napus L. grown on trace element-contaminated and non-contaminated fields: a genotypic and phenotypic comparison.
Croes S, Weyens N, Janssen J, Vercampt H, Colpaert JV, Carleer R, Vangronsveld J., Microb Biotechnol 6(4), 2013
PMID: 23594409
Detection of volatile components in rapeseed by solid phase micro-extraction-gas chromatography-mass spectrometry
Tang, J Food Saf Qual 5(), 2014
Production of volatile metabolites by grape-associated microorganisms.
Verginer M, Leitner E, Berg G., J. Agric. Food Chem. 58(14), 2010
PMID: 20575540
A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria.
Cernava T, Aschenbrenner IA, Grube M, Liebminger S, Berg G., Front Microbiol 6(), 2015
PMID: 25983730
Data management: NetCDF: an interface for scientific data access
Rew, IEEE Comput Graph Appl 4(), 1990
MeltDB 2.0-advances of the metabolomics software system.
Kessler N, Neuweger H, Bonte A, Langenkamper G, Niehaus K, Nattkemper TW, Goesmann A., Bioinformatics 29(19), 2013
PMID: 23918246
MeltDB: a software platform for the analysis and integration of metabolomics experiment data.
Neuweger H, Albaum SP, Dondrup M, Persicke M, Watt T, Niehaus K, Stoye J, Goesmann A., Bioinformatics 24(23), 2008
PMID: 18765459
Learning to Classify Organic and Conventional Wheat - A Machine Learning Driven Approach Using the MeltDB 2.0 Metabolomics Analysis Platform.
Kessler N, Bonte A, Albaum SP, Mader P, Messmer M, Goesmann A, Niehaus K, Langenkamper G, Nattkemper TW., Front Bioeng Biotechnol 3(), 2015
PMID: 25853128
GMD@CSB.DB: the Golm Metabolome Database.
Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D., Bioinformatics 21(8), 2004
PMID: 15613389

AUTHOR UNKNOWN, 0

IUPAC, 1997
A chemometric approach for the differentiation of sensory good and bad (musty/fusty) virgin rapeseed oils on basis of selected volatile compounds analyzed by dynamic headspace GC-MS
Bonte, Eur J Lipid Sci Technol 119(), 2017
Flavoromics approach in monitoring changes in volatile compounds of virgin rapeseed oil caused by seed roasting.
Gracka A, Jelen HH, Majcher M, Siger A, Kaczmarek A., J Chromatogr A 1428(), 2015
PMID: 26592559
Effect of emulsion characteristics on the release of aroma as detected by sensory evaluation, static headspace gas chromatography, and electronic nose.
Miettinen SM, Tuorila H, Piironen V, Vehkalahti K, Hyvonen L., J. Agric. Food Chem. 50(15), 2002
PMID: 12105951
Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae.
Walterson AM, Stavrinides J., FEMS Microbiol. Rev. 39(6), 2015
PMID: 26109597
Stenotrophomonas rhizophila sp. nov., a novel plant-associated bacterium with antifungal properties.
Wolf A, Fritze A, Hagemann M, Berg G., Int. J. Syst. Evol. Microbiol. 52(Pt 6), 2002
PMID: 12508851
Prevention of aflatoxin contamination by a soil bacterium of Stenotrophomonas sp. that produces aflatoxin production inhibitors.
Jermnak U, Chinaphuti A, Poapolathep A, Kawai R, Nagasawa H, Sakuda S., Microbiology (Reading, Engl.) 159(Pt 5), 2013
PMID: 23449921
Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5.
Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GS, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE., Nat. Biotechnol. 23(7), 2005
PMID: 15980861
Pseudomonas genomes: diverse and adaptable.
Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW., FEMS Microbiol. Rev. 35(4), 2011
PMID: 21361996
Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice.
Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM., Can. J. Microbiol. 47(10), 2001
PMID: 11718545
Mass spectrometry identification of alkyl-substituted pyrazines produced by Pseudomonas spp. isolates obtained from wine corks.
Baneras L, Trias R, Godayol A, Cerdan L, Nawrath T, Schulz S, Antico E., Food Chem 138(4), 2012
PMID: 23497899
Volatiles produced by the mycophagous soil bacterium Collimonas.
Garbeva P, Hordijk C, Gerards S, de Boer W., FEMS Microbiol. Ecol. 87(3), 2013
PMID: 24329759
Varietal and processing effects on the volatile profile of rapeseed oils
Wei F, Yang M, Zhou Q, Zheng C, Peng JH, Liu CS, Huang FH, Chen H., Lebensm. Wiss. Technol. 48(2), 2012
PMID: IND44695063
Characterisation of the key aroma compounds in commercial native cold-pressed rapeseed oil by means of the sensomics approach
Matheis, Eur Food Res Technol 242(), 2016
Bacterial volatiles promote growth in Arabidopsis.
Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW., Proc. Natl. Acad. Sci. U.S.A. 100(8), 2003
PMID: 12684534
Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food.
Landaud S, Helinck S, Bonnarme P., Appl. Microbiol. Biotechnol. 77(6), 2007
PMID: 18064452
Identification and use of potential bacterial organic antifungal volatiles in biocontrol.
Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC., Soil Biol. Biochem. 37(5), 2005
PMID: IND43692907
Comparison of Aroma-Active Volatiles in Oolong Tea Infusions Using GC-Olfactometry, GC-FPD, and GC-MS.
Zhu J, Chen F, Wang L, Niu Y, Yu D, Shu C, Chen H, Wang H, Xiao Z., J. Agric. Food Chem. 63(34), 2015
PMID: 26257073

AUTHOR UNKNOWN, 0
Relationship between chromatographic profiling by HS-SPME and sensory quality of mandarin juices: effect of squeeze technology
Alvarez, Procedia Food Sci 1(), 2011

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28960362
PubMed | Europe PMC

Suchen in

Google Scholar