Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features

Keitel A, Gross J, Kayser C (2018)
Plos Biology 16(3): e2004473.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Keitel, Anne; Gross, Joachim; Kayser, ChristophUniBi
Erscheinungsjahr
2018
Zeitschriftentitel
Plos Biology
Band
16
Ausgabe
3
Art.-Nr.
e2004473
ISSN
1545-7885
Page URI
https://pub.uni-bielefeld.de/record/2919150

Zitieren

Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. Plos Biology. 2018;16(3): e2004473.
Keitel, A., Gross, J., & Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. Plos Biology, 16(3), e2004473. doi:10.1371/journal.pbio.2004473
Keitel, Anne, Gross, Joachim, and Kayser, Christoph. 2018. “Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features”. Plos Biology 16 (3): e2004473.
Keitel, A., Gross, J., and Kayser, C. (2018). Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. Plos Biology 16:e2004473.
Keitel, A., Gross, J., & Kayser, C., 2018. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. Plos Biology, 16(3): e2004473.
A. Keitel, J. Gross, and C. Kayser, “Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features”, Plos Biology, vol. 16, 2018, : e2004473.
Keitel, A., Gross, J., Kayser, C.: Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. Plos Biology. 16, : e2004473 (2018).
Keitel, Anne, Gross, Joachim, and Kayser, Christoph. “Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features”. Plos Biology 16.3 (2018): e2004473.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):

Link(s) zu Volltext(en)
Access Level
OA Open Access

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Attention and speech-processing related functional brain networks activated in a multi-speaker environment.
Tóth B, Farkas D, Urbán G, Szalárdy O, Orosz G, Hunyadi L, Hajdu B, Kovács A, Szabó BT, Shestopalova LB, Winkler I., PLoS One 14(2), 2019
PMID: 30818389
Speech-specific audiovisual integration modulates induced theta-band oscillations.
Lindborg A, Baart M, Stekelenburg JJ, Vroomen J, Andersen TS., PLoS One 14(7), 2019
PMID: 31310616
Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes.
Kayser C., Front Hum Neurosci 13(), 2019
PMID: 31396064

85 References

Daten bereitgestellt von Europe PubMed Central.

Cortical tracking of hierarchical linguistic structures in connected speech.
Ding N, Melloni L, Zhang H, Tian X, Poeppel D., Nat. Neurosci. 19(1), 2015
PMID: 26642090
Speech rhythms and multiplexed oscillatory sensory coding in the human brain.
Gross J, Hoogenboom N, Thut G, Schyns P, Panzeri S, Belin P, Garrod S., PLoS Biol. 11(12), 2013
PMID: 24391472
Neural Oscillations in Speech: Don't be Enslaved by the Envelope.
Obleser J, Herrmann B, Henry MJ., Front Hum Neurosci 6(), 2012
PMID: 22969717
Temporal properties of spontaneous speech—a syllable-centric perspective
S, Journal of Phonetics 31(), 2003
A cross-language perspective on speech information rate
F, Language 87(), 2011
The natural statistics of audiovisual speech.
Chandrasekaran C, Trubanova A, Stillittano S, Caplier A, Ghazanfar AA., PLoS Comput. Biol. 5(7), 2009
PMID: 19609344
Temporal modulations in speech and music.
Ding N, Patel AD, Chen L, Butler H, Luo C, Poeppel D., Neurosci Biobehav Rev 81(Pt B), 2017
PMID: 28212857
Acoustic-driven delta rhythms as prosodic markers
O, Lang Cogn Neurosci 32(), 2017
Linguistic bias modulates interpretation of speech via neural delta-band oscillations
L, Cereb Cortex (), 2016
Speech rhythm and temporal structure: Converging perspectives?
U, Laboratory Phonology 4(), 2013
Oscillators and syllables: a cautionary note.
Cummins F., Front Psychol 3(), 2012
PMID: 23060833
Focal versus distributed temporal cortex activity for speech sound category assignment
S, Proc Natl Acad Sci U S A (), 2018
Causal contribution of primate auditory cortex to auditory perceptual decision-making.
Tsunada J, Liu AS, Gold JI, Cohen YE., Nat. Neurosci. 19(1), 2015
PMID: 26656644
Speech comprehension is correlated with temporal response patterns recorded from auditory cortex.
Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM., Proc. Natl. Acad. Sci. U.S.A. 98(23), 2001
PMID: 11698688
Contributions of local speech encoding and functional connectivity to audio-visual speech perception.
Giordano BL, Ince RAA, Gross J, Schyns PG, Panzeri S, Kayser C., Elife 6(), 2017
PMID: 28590903
Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing.
Di Liberto GM, O'Sullivan JA, Lalor EC., Curr. Biol. 25(19), 2015
PMID: 26412129
Brain oscillations during spoken sentence processing.
Pena M, Melloni L., J Cogn Neurosci 24(5), 2011
PMID: 21981666
Characterizing Neural Entrainment to Hierarchical Linguistic Units using Electroencephalography (EEG).
Ding N, Melloni L, Yang A, Wang Y, Zhang W, Poeppel D., Front Hum Neurosci 11(), 2017
PMID: 29033809
Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli.
Ten Oever S, Schroeder CE, Poeppel D, van Atteveldt N, Mehta AD, Megevand P, Groppe DM, Zion-Golumbic E., J. Neurosci. 37(19), 2017
PMID: 28411273
Delta (but not theta)‐band cortical entrainment involves speech‐specific processing
N, European Journal of Neuroscience (), 2018
Data from: Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features
A, Dryad Digital Repository (), 2018
Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing.
Kayser C, Wilson C, Safaai H, Sakata S, Panzeri S., J. Neurosci. 35(20), 2015
PMID: 25995464
Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha.
Kayser SJ, Ince RA, Gross J, Kayser C., J. Neurosci. 35(44), 2015
PMID: 26538641
An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex.
Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE., J. Neurophysiol. 94(3), 2005
PMID: 15901760
Delta-Beta Coupled Oscillations Underlie Temporal Prediction Accuracy.
Arnal LH, Doelling KB, Poeppel D., Cereb. Cortex 25(9), 2014
PMID: 24846147
Listening to rhythms activates motor and premotor cortices.
Bengtsson SL, Ullen F, Ehrsson HH, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N., Cortex 45(1), 2008
PMID: 19041965
Rhythm and beat perception in motor areas of the brain.
Grahn JA, Brett M., J Cogn Neurosci 19(5), 2007
PMID: 17488212
Motor contributions to the temporal precision of auditory attention.
Morillon B, Schroeder CE, Wyart V., Nat Commun 5(), 2014
PMID: 25314898
Endogenous modulation of low frequency oscillations by temporal expectations.
Cravo AM, Rohenkohl G, Wyart V, Nobre AC., J. Neurophysiol. 106(6), 2011
PMID: 21900508
Fast and slow oscillations in human primary motor cortex predict oncoming behaviorally relevant cues.
Saleh M, Reimer J, Penn R, Ojakangas CL, Hatsopoulos NG., Neuron 65(4), 2010
PMID: 20188651
Listening to speech activates motor areas involved in speech production.
Wilson SM, Saygin AP, Sereno MI, Iacoboni M., Nat. Neurosci. 7(7), 2004
PMID: 15184903
Seeing and hearing speech excites the motor system involved in speech production.
Watkins KE, Strafella AP, Paus T., Neuropsychologia 41(8), 2003
PMID: 12667534
Speech listening specifically modulates the excitability of tongue muscles: a TMS study.
Fadiga L, Craighero L, Buccino G, Rizzolatti G., Eur. J. Neurosci. 15(2), 2002
PMID: 11849307
The essential role of premotor cortex in speech perception.
Meister IG, Wilson SM, Deblieck C, Wu AD, Iacoboni M., Curr. Biol. 17(19), 2007
PMID: 17900904
Prediction of external events with our motor system: towards a new framework.
Schubotz RI., Trends Cogn. Sci. (Regul. Ed.) 11(5), 2007
PMID: 17383218
Cortical oscillations and sensory predictions.
Arnal LH, Giraud AL., Trends Cogn. Sci. (Regul. Ed.) 16(7), 2012
PMID: 22682813
Dynamics of Active Sensing and perceptual selection.
Schroeder CE, Wilson DA, Radman T, Scharfman H, Lakatos P., Curr. Opin. Neurobiol. 20(2), 2010
PMID: 20307966
Predictive motor control of sensory dynamics in auditory active sensing.
Morillon B, Hackett TA, Kajikawa Y, Schroeder CE., Curr. Opin. Neurobiol. 31(), 2015
PMID: 25594376
Beta-band oscillations--signalling the status quo?
Engel AK, Fries P., Curr. Opin. Neurobiol. 20(2), 2010
PMID: 20359884
Motor origin of temporal predictions in auditory attention
B, Proceedings of the National Academy of Sciences (), 2017
The cortical language circuit: from auditory perception to sentence comprehension.
Friederici AD., Trends Cogn. Sci. (Regul. Ed.) 16(5), 2012
PMID: 22516238
Dynamic speech representations in the human temporal lobe.
Leonard MK, Chang EF., Trends Cogn. Sci. (Regul. Ed.) 18(9), 2014
PMID: 24906217
Ventral and dorsal pathways for language.
Saur D, Kreher BW, Schnell S, Kummerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C., Proc. Natl. Acad. Sci. U.S.A. 105(46), 2008
PMID: 19004769
Prosody: Models and measurements
J, 1983
Loudness predicts prominence: fundamental frequency lends little.
Kochanski G, Grabe E, Coleman J, Rosner B., J. Acoust. Soc. Am. 118(2), 2005
PMID: 16158659

J, 2005
Suprasegmental features of speech
I, Contemporary issues in experimental phonetics 225(), 1976
Distinct contributions of low-and high-frequency neural oscillations to speech comprehension
A, Language, Cognition and Neuroscience 32(), 2017
Neural Oscillations Carry Speech Rhythm through to Comprehension.
Peelle JE, Davis MH., Front Psychol 3(), 2012
PMID: 22973251
A robust and representative lower bound on object processing speed in humans.
Bieniek MM, Bennett PJ, Sekuler AB, Rousselet GA., Eur. J. Neurosci. 44(2), 2015
PMID: 26469359
Scanning the horizon: towards transparent and reproducible neuroimaging research.
Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafo MR, Nichols TE, Poline JB, Vul E, Yarkoni T., Nat. Rev. Neurosci. 18(2), 2017
PMID: 28053326
The assessment and analysis of handedness: the Edinburgh inventory.
Oldfield RC., Neuropsychologia 9(1), 1971
PMID: 5146491
Correlation between the American-Academy-of-Otolaryngology-Head-and-Neck-Surgery 5-minute hearing test and standard audiological data
KJ, Otolaryngology-Head and Neck Surgery 111(), 1994
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952
Chimaeric sounds reveal dichotomies in auditory perception.
Smith ZM, Delgutte B, Oxenham AJ., Nature 416(6876), 2002
PMID: 11882898
Speaker identification on the SCOTUS corpus
J, Journal of the Acoustical Society of America 123(), 2008
The syllable in the light of motor skills and neural oscillations
A, Language Cognition and Neuroscience 32(), 2017
Praat, a system for doing phonetics by computer
P, Glot International 5(), 2001
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Oostenveld R, Fries P, Maris E, Schoffelen JM., Comput Intell Neurosci 2011(), 2010
PMID: 21253357
Localization of brain electrical activity via linearly constrained minimum variance spatial filtering.
Van Veen BD, van Drongelen W, Yuchtman M, Suzuki A., IEEE Trans Biomed Eng 44(9), 1997
PMID: 9282479
A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula.
Ince RA, Giordano BL, Kayser C, Rousselet GA, Gross J, Schyns PG., Hum Brain Mapp 38(3), 2016
PMID: 27860095
Controlling the False Discovery Rate—a Practical and Powerful Approach to Multiple Testing
Y, Journal of the Royal Statistical Society Series B-Methodological 57(), 1995
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29529019
PubMed | Europe PMC

Preprint: 10.1101/195941

Suchen in

Google Scholar