Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii

Fechner S, Grant K, von der Emde G, Engelmann J (2018)
PLOS ONE 13(4): e0194347.

Download
OA 12.58 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ;
Abstract / Bemerkung
Mormyrid fish rely on reafferent input for active electrolocation. Their electrosensory input consists of phase and amplitude information. These are encoded by differently tuned receptor cells within the Mormyromasts, A- and B-cells, respectively, which are distributed over the animal’s body. These convey their information to two topographically ordered medullary zones in the electrosensory lateral line lobe (ELL). The so-called medial zone receives only amplitude information, while the dorsolateral zone receives amplitude and phase information. Using both sources of information, Mormyrid fish can disambiguate electrical impedances. Where and how this disambiguation takes place is presently unclear. We here investigate phase-sensitivity downstream from the electroreceptors. We provide first evidence of phase-sensitivity in the medial zone of ELL. In this zone I-cells consistently decreased their rate to positive phase-shifts (6 of 20 cells) and increased their rate to negative shifts (11/20), while E-cells of the medial zone (3/9) responded oppositely to I-cells. In the dorsolateral zone the responses of E- and I-cells were opposite to those found in the medial zone. Tracer injections revealed interzonal projections that interconnect the dorsolateral and medial zones in a somatotopic manner. In summary, we show that phase information is processed differently in the dorsolateral and the medial zones. This is the first evidence for a mechanism that enhances the contrast between two parallel sensory channels in Mormyrid fish. This could be beneficial for impedance discrimination that ultimately must rely on a subtractive merging of these two sensory streams.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
13
Ausgabe
4
Art.-Nr.
e0194347
ISSN
Finanzierungs-Informationen
Article Processing Charge funded by the Deutsche Forschungsgemeinschaft and the Open Access Publication Fund of Bielefeld University.
PUB-ID

Zitieren

Fechner S, Grant K, von der Emde G, Engelmann J. Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLOS ONE. 2018;13(4): e0194347.
Fechner, S., Grant, K., von der Emde, G., & Engelmann, J. (2018). Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLOS ONE, 13(4), e0194347. doi:10.1371/journal.pone.0194347
Fechner, S., Grant, K., von der Emde, G., and Engelmann, J. (2018). Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLOS ONE 13:e0194347.
Fechner, S., et al., 2018. Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLOS ONE, 13(4): e0194347.
S. Fechner, et al., “Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii”, PLOS ONE, vol. 13, 2018, : e0194347.
Fechner, S., Grant, K., von der Emde, G., Engelmann, J.: Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLOS ONE. 13, : e0194347 (2018).
Fechner, Sylvia, Grant, Kirsty, von der Emde, Gerhard, and Engelmann, Jacob. “Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii”. PLOS ONE 13.4 (2018): e0194347.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2018-04-16T08:08:36Z

52 References

Daten bereitgestellt von Europe PubMed Central.

Topographic maps are fundamental to sensory processing.
Kaas JH., Brain Res. Bull. 44(2), 1997
PMID: 9292198
Are topographic maps fundamental to sensory processing?
Weinberg RJ., Brain Res. Bull. 44(2), 1997
PMID: 9292199
The map in your head: How does the brain represent the outside world?
AUTHOR UNKNOWN, 2002
Optimal neuronal tuning for finite stimulus spaces.
Brown WM, Backer A., Neural Comput 18(7), 2006
PMID: 16764512
Auditory cortex mapmaking: principles, projections, and plasticity.
Schreiner CE, Winer JA., Neuron 56(2), 2007
PMID: 17964251
Auditory thalamocortical transformation: structure and function.
Winer JA, Miller LM, Lee CC, Schreiner CE., Trends Neurosci. 28(5), 2005
PMID: 15866200
Tonotopic and heterotopic projection systems in physiologically defined auditory cortex.
Lee CC, Schreiner CE, Imaizumi K, Winer JA., Neuroscience 128(4), 2004
PMID: 15464293
The mechanism of object location in Gymnarchus niloticus and similar fish
AUTHOR UNKNOWN, 1958
Neural maps in the electrosensory system of weakly electric fish.
Krahe R, Maler L., Curr. Opin. Neurobiol. 24(1), 2013
PMID: 24492073
Brain organization in teleost fishes: lessons from the electrosense
AUTHOR UNKNOWN, 1993
A sensory brain map for each behavior?
Metzner W, Juranek J., Proc. Natl. Acad. Sci. U.S.A. 94(26), 1997
PMID: 9405693
Why does the brain have so many visual areas?
Kaas JH., J Cogn Neurosci 1(2), 1989
PMID: 23968461
Why have multiple cortical areas?
Barlow HB., Vision Res. 26(1), 1986
PMID: 3716216

AUTHOR UNKNOWN, 1982

AUTHOR UNKNOWN, 2011
Parallel coding of first- and second-order stimulus attributes by midbrain electrosensory neurons.
McGillivray P, Vonderschen K, Fortune ES, Chacron MJ., J. Neurosci. 32(16), 2012
PMID: 22514313
Waveform tuning of electroreceptor cells in the weakly electric fish, Gnathonemus petersii
AUTHOR UNKNOWN, 1997
Ultrastructure of an electroreceptor (mormyromast) in a mormyrid fish, Gnathonemus petersii. II
AUTHOR UNKNOWN, 1970
A latency-change mechanism involved in sensory coding of electric fish
AUTHOR UNKNOWN, 1967
Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus
AUTHOR UNKNOWN, 1992
Extreme phase sensitivity of afferents which innervate mormyromast electroreceptors
AUTHOR UNKNOWN, 1992
Discrimination of objects through electrolocation in the weakly electric fish, Gnathonemus petersii
AUTHOR UNKNOWN, 1990
Perception of electric properties of objects in electrolocating weakly electric fish: two-dimensional similarity scaling reveals a City-Block metric
AUTHOR UNKNOWN, 1994
The sensing of electrical capacitances by weakly electric Mormyrid fish: effects of water conductivity
AUTHOR UNKNOWN, 1993

AUTHOR UNKNOWN, 2005
Central connections of the posterior lateral line lobe in mormyrid fish.
Bell CC, Finger TE, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163655
Responses of cells in the mormyrid electrosensory lobe to EODs with distorted waveforms: implications for capacitance detection
AUTHOR UNKNOWN, 1994
Functional foveae in an electrosensory system.
Bacelo J, Engelmann J, Hollmann M, von der Emde G, Grant K., J. Comp. Neurol. 511(3), 2008
PMID: 18803238
Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli
AUTHOR UNKNOWN, 2004
Effects of restraint and immobilization on electrosensory behaviors of weakly electric fish.
Hitschfeld EM, Stamper SA, Vonderschen K, Fortune ES, Chacron MJ., ILAR J 50(4), 2009
PMID: 19949252
Temporal coding of species recognition signals in an electric fish.
Hopkins CD, Bass AH., Science 212(4490), 1981
PMID: 7209524
Phase sensitivity in electroreception.
Heiligenberg W, Altes RA., Science 199(4332), 1978
PMID: 622577
Sensory and motor effects of etomidate anesthesia.
Engelmann J, Bacelo J, van den Burg E, Grant K., J. Neurophysiol. 95(2), 2005
PMID: 16267119
Myelinated dendrites in the mormyrid electrosensory lobe.
Meek J, Hafmans TG, Han V, Bell CC, Grant K., J. Comp. Neurol. 431(3), 2001
PMID: 11170004
Electrosensory pathways to the valvula cerebelli in mormyrid fish.
Finger TE, Bell CC, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163654
Central connections of the posterior lateral line lobe in mormyrid fish.
Bell CC, Finger TE, Russell CJ., Exp Brain Res 42(1), 1981
PMID: 6163655
Myelinated dendrites in the mormyrid electrosensory lobe.
Meek J, Hafmans TG, Han V, Bell CC, Grant K., J. Comp. Neurol. 431(3), 2001
PMID: 11170004
Dye coupling without gap junctions suggests excitatory connections of gamma-aminobutyric acidergic neurons.
Meek J, Kirchberg G, Grant K, von der Emde G., J. Comp. Neurol. 468(2), 2004
PMID: 14648676

AUTHOR UNKNOWN, 1986
From sparks to spikes: information processing in the electrosensory systems of fish.
Sawtell NB, Williams A, Bell CC., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16009545
Structural organization of the mormyrid electrosensory lateral line lobe
Meek J, Grant K, Bell C., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210669
Receptive field properties of neurons in the electrosensory lateral line lobe of the weakly electric fish, Gnathonemus petersii.
Metzen MG, Engelmann J, Bacelo J, Grant K, von der Emde G., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(12), 2008
PMID: 18855000
Responses of neurons in the electrosensory lateral line lobe of the weakly electric fish Gnathonemus petersii to simple and complex electrosensory stimuli
AUTHOR UNKNOWN, 2004

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29641541
PubMed | Europe PMC

Suchen in

Google Scholar