Spectral analysis of localized rotating waves in parabolic systems

Beyn W-J, Otten D (2018)
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376(2117): 28.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this paper, we study the spectra and Fredholm properties of Ornstein-Uhlenbeck operators Lv(x): = A Delta v(x) + < Sx, del v(x)> + Df(v(x)(x))v(x), x is an element of R-d , d >= 2, where v : R-d -> R-m is the profile of a rotating wave satisfying v (x) -> v(infinity) is an element of R-m as vertical bar x vertical bar -> infinity, the map f : R-m -> R-m is smooth and the matrix A is an element of R-m,R-m eigenvalues with positive real parts and commutes with the limit matrix Df (v(infinity)). The matrix S. Rd, d is assumed to be skew- symmetric with eigenvalues (lambda(1),...,lambda(d)) = (+/- i sigma(1),...,+/- i sigma(k),0,..., 0). The spectra of these linearized operators are crucial for the nonlinear stability of rotating waves in reaction-diffusion systems. We prove under appropriate conditions that every lambda is an element of C satisfying the dispersion relation det(lambda I-m + eta(2)A - Df(v(infinity)) + i < n, sigma > I-m) = 0 for soe=me eta is an element of R and n is an element of Z(k), sigma = (sigma(1),...,sigma(k)) is an element of R-k belongs to the essential spectrum sigma(ess)(L) in L-p. For values Re lambda to the right of the spectral bound for Df (v(infinity)), we show that the operator lambda I - L is Fredholm of index 0, solve the identification problem for the adjoint operator (lambda I - L)* and formulate the Fredholm alternative. Moreover, we show that the set sigma(S) boolean OR {lambda(i) + lambda(i) : lambda(i), lambda(j is an element of) sigma(S), 1 <= i <= j <= d} belongs to the point spectrum sigma(pt)(L) in L-p. We determine the associated eigenfunctions and show that they decay exponentially in space. As an application, we analyse spinning soliton solutions which occur in the Ginzburg-Landau equation and compute their numerical spectra as well as associated eigenfunctions. Our results form the basis for investigating the nonlinear stability of rotating waves in higher space dimensions and truncations to bounded domains. This article is part of the themed issue 'tability of nonlinear waves and patterns and related topics'.
Stichworte
rotating wave; Fredholm theory; essential spectrum; point spectrum; Ornstein-Uhlenbeck operator
Erscheinungsjahr
2018
Zeitschriftentitel
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Band
376
Ausgabe
2117
Art.-Nr.
28
ISSN
1364-503X
eISSN
1471-2962
Page URI
https://pub.uni-bielefeld.de/record/2919044

Zitieren

Beyn W-J, Otten D. Spectral analysis of localized rotating waves in parabolic systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018;376(2117): 28.
Beyn, W. - J., & Otten, D. (2018). Spectral analysis of localized rotating waves in parabolic systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2117), 28. doi:10.1098/rsta.2017.0196
Beyn, Wolf-Jürgen, and Otten, Denny. 2018. “Spectral analysis of localized rotating waves in parabolic systems”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2117): 28.
Beyn, W. - J., and Otten, D. (2018). Spectral analysis of localized rotating waves in parabolic systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376:28.
Beyn, W.-J., & Otten, D., 2018. Spectral analysis of localized rotating waves in parabolic systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2117): 28.
W.-J. Beyn and D. Otten, “Spectral analysis of localized rotating waves in parabolic systems”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376, 2018, : 28.
Beyn, W.-J., Otten, D.: Spectral analysis of localized rotating waves in parabolic systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 376, : 28 (2018).
Beyn, Wolf-Jürgen, and Otten, Denny. “Spectral analysis of localized rotating waves in parabolic systems”. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376.2117 (2018): 28.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Stability of nonlinear waves and patterns and related topics.
Ghazaryan A, Lafortune S, Manukian V., Philos Trans A Math Phys Eng Sci 376(2117), 2018
PMID: 29507181

45 References

Daten bereitgestellt von Europe PubMed Central.

Spatial decay of rotating waves in reaction diffusion systems
Beyn, Dyn. Partial Differ. Equ. 13(), 2016
Exponentially weighted resolvent estimates for complex Ornstein-Uhlenbeck systems
Otten, J. Evol. Equ. 15(), 2015
The identification problem for complex-valued Ornstein-Uhlenbeck operators in
Otten, Semigroup Forum 95(), 2017

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Criterion for the L p -dissipativity of second order differential operators with complex coefficients
Cialdea, J. Math. Pures Appl. 84(), 2005
Criteria for the L p -dissipativity of systems of second order differential equations
Cialdea, Ric. Mat. 55(), 2006
The angle of an operator and positive operator products
Gustafson, Bull. Am. Math. Soc. 74(), 1968

AUTHOR UNKNOWN, 0
A new L p -antieigenvalue condition for Ornstein-Uhlenbeck operators
Otten, J. Math. Anal. Appl. 444(), 2016

AUTHOR UNKNOWN, 0
Nonlinear stability of rotating patterns
Beyn, Dyn. Partial Differ. Equ. 5(), 2008
Commutators of skew-symmetric matrices
Bloch, Int. J. Bifurcation Chaos Appl. Sci. Eng. 15(), 2005
On the matrix function A X+X ′ A ′
Taussky, Arch. Rat. Mech. Anal. 9(), 1962
Localization of response functions of spiral waves in the FitzHugh-Nagumo system
Biktasheva, Int. J. Bifurcation Chaos Appl. Sci. Eng. 16(), 2006

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
On the Ornstein-Uhlenbeck operator in spaces of continuous functions
Da, J. Funct. Anal. 131(), 1995
L 1-spectrum of Banach space valued Ornstein-Uhlenbeck operators
Kozhan, Semigroup Forum 78(), 2009
L p -spectrum of Ornstein-Uhlenbeck operators
Metafune, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30(), 2001
Spectrum of Ornstein-Uhlenbeck operators in L p spaces with respect to invariant measures
Metafune, J. Funct. Anal. 196(), 2002
Second quantization and the L p -spectrum of nonsymmetric Ornstein-Uhlenbeck operators
van, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8(), 2005

AUTHOR UNKNOWN, 0
Absolute versus convective instability of spiral waves
Sandstede B, Scheel A., Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 62(6 Pt A), 2000
PMID: 11138042
Superspiral structures of meandering and drifting spiral waves.
Sandstede B, Scheel A., Phys. Rev. Lett. 86(1), 2001
PMID: 11136121
Curvature effects on spiral spectra: generation of point eigenvalues near branch points.
Sandstede B, Scheel A., Phys Rev E Stat Nonlin Soft Matter Phys 73(1 Pt 2), 2006
PMID: 16486268
Computation of spiral spectra
Wheeler, SIAM J. Appl. Dyn. Syst. 5(), 2006
Alternative stable scroll waves and conversion of autowave turbulence.
Foulkes AJ, Barkley D, Biktashev VN, Biktasheva IV., Chaos 20(4), 2010
PMID: 21198106
Exponential decay and Fredholm properties in second-order quasilinear elliptic systems
Gebran, J. Differ. Equ. 249(), 2010
Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities
Rabier, J. Differ. Equ. 165(), 2000
Fredholm properties of radially symmetric, second order differential operators
Pogan, Int. J. Dyn. Syst. Differ. Equ. 3(), 2011

AUTHOR UNKNOWN, 0
Dynamics of spiral waves on unbounded domains using center-manifold reductions
Sandstede, J. Differ. Equ. 141(), 1997
Rotating waves in simple scalar excitable media: approximations and numerical solutions.
Ermentrout B, van der Ventel BI., J Math Biol 73(6-7), 2016
PMID: 27022950

AUTHOR UNKNOWN, 0
The domain of elliptic operators on with unbounded drift coefficients
Prüss, Houston J. Math. 32(), 2006
Norm discontinuity of Ornstein-Uhlenbeck semigroups
van, Semigroup Forum 59(), 1999

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
On the theory of superconductivity
Landau, J. Exp. Theor. Phys. (USSR) 20(), 1950
Spinning solitons in cubic-quintic nonlinear media
Crasovan, Pramana J. Phys. 57(), 2001

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29507180
PubMed | Europe PMC

Suchen in

Google Scholar