Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex

Delle Monache S, Lacquaniti F, Bosco G (2017)
Journal of Neurophysiology 118(3): 1809-1823.

Zeitschriftenaufsatz | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
Journal of Neurophysiology
Band
118
Ausgabe
3
Seite(n)
1809-1823
ISSN
0022-3077
Page URI
https://pub.uni-bielefeld.de/record/2918902

Zitieren

Delle Monache S, Lacquaniti F, Bosco G. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex. Journal of Neurophysiology. 2017;118(3):1809-1823.
Delle Monache, S., Lacquaniti, F., & Bosco, G. (2017). Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex. Journal of Neurophysiology, 118(3), 1809-1823. doi:10.1152/jn.00068.2017
Delle Monache, S., Lacquaniti, F., and Bosco, G. (2017). Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex. Journal of Neurophysiology 118, 1809-1823.
Delle Monache, S., Lacquaniti, F., & Bosco, G., 2017. Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex. Journal of Neurophysiology, 118(3), p 1809-1823.
S. Delle Monache, F. Lacquaniti, and G. Bosco, “Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex”, Journal of Neurophysiology, vol. 118, 2017, pp. 1809-1823.
Delle Monache, S., Lacquaniti, F., Bosco, G.: Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex. Journal of Neurophysiology. 118, 1809-1823 (2017).
Delle Monache, Sergio, Lacquaniti, Francesco, and Bosco, Gianfranco. “Differential contributions to the interception of occluded ballistic trajectories by the temporoparietal junction, area hMT/V5, and the intraparietal cortex”. Journal of Neurophysiology 118.3 (2017): 1809-1823.

88 References

Daten bereitgestellt von Europe PubMed Central.

The Pivotal Role of the Right Parietal Lobe in Temporal Attention.
Agosta S, Magnago D, Tyler S, Grossman E, Galante E, Ferraro F, Mazzini N, Miceli G, Battelli L., J Cogn Neurosci 29(5), 2016
PMID: 27991181
Neuronal correlates of inferred motion in primate posterior parietal cortex.
Assad JA, Maunsell JH., Nature 373(6514), 1995
PMID: 7845463
The 'when' pathway of the right parietal lobe.
Battelli L, Pascual-Leone A, Cavanagh P., Trends Cogn. Sci. (Regul. Ed.) 11(5), 2007
PMID: 17379569
Human ocular pursuit during the transient disappearance of a visual target.
Bennett SJ, Barnes GR., J. Neurophysiol. 90(4), 2003
PMID: 14534275
Cerebral representations of space and time.
Beudel M, Renken R, Leenders KL, de Jong BM., Neuroimage 44(3), 2008
PMID: 18951984
Catching what we can't see: manual interception of occluded fly-ball trajectories.
Bosco G, Delle Monache S, Lacquaniti F., PLoS ONE 7(11), 2012
PMID: 23166653
Filling gaps in visual motion for target capture.
Bosco G, Monache SD, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M, Lacquaniti F., Front Integr Neurosci 9(), 2015
PMID: 25755637
Looking into Chapman’s homer: the physics of judging a fly ball
Brancazio PJ., 1985
The vestibular cortex. Its locations, functions, and disorders.
Brandt T, Dieterich M., Ann. N. Y. Acad. Sci. 871(), 1999
PMID: 10372080
Hitting moving objects: is target speed used in guiding the hand?
Brouwer AM, Brenner E, Smeets JB., Exp Brain Res 143(2), 2002
PMID: 11880896
Encoding of temporal probabilities in the human brain.
Bueti D, Bahrami B, Walsh V, Rees G., J. Neurosci. 30(12), 2010
PMID: 20335470
A novel method for measuring gaze orientation in space in unrestrained head conditions.
Cesqui B, de Langenberg Rv, Lacquaniti F, d'Avella A., J Vis 13(8), 2013
PMID: 23902754
Gaze behavior in one-handed catching and its relation with interceptive performance: what the eyes can't tell.
Cesqui B, Mezzetti M, Lacquaniti F, d'Avella A., PLoS ONE 10(3), 2015
PMID: 25793989
Predictive plus online visual information optimizes temporal precision in interception.
de la Malla C, Lopez-Moliner J., J Exp Psychol Hum Percept Perform 41(5), 2015
PMID: 26076178
Neural prediction of complex accelerations for object interception.
de Rugy A, Marinovic W, Wallis G., J. Neurophysiol. 107(3), 2011
PMID: 22090456
Time-to-contact judgments of an approaching object that is partially concealed by an occluder.
DeLucia PR., J Exp Psychol Hum Percept Perform 30(2), 2004
PMID: 15053689
Adaptations of lateral hand movements to early and late visual occlusion in catching.
Dessing JC, Oostwoud Wijdenes L, Peper CL, Beek PJ., Exp Brain Res 192(4), 2008
PMID: 18936928
The role of areas MT+/V5 and SPOC in spatial and temporal control of manual interception: an rTMS study.
Dessing JC, Vesia M, Crawford JD., Front Behav Neurosci 7(), 2013
PMID: 23468002
A measure of acoustic noise generated from transcranial magnetic stimulation coils.
Dhamne SC, Kothare RS, Yu C, Hsieh TH, Anastasio EM, Oberman L, Pascual-Leone A, Rotenberg A., Brain Stimul 7(3), 2014
PMID: 24582370
Noninvasive stimulation of the temporoparietal junction: A systematic review.
Donaldson PH, Rinehart NJ, Enticott PG., Neurosci Biobehav Rev 55(), 2015
PMID: 26073069
Target velocity effects on manual interception kinematics.
Dubrowski A, Lam J, Carnahan H., Acta Psychol (Amst) 104(1), 2000
PMID: 10769942
Representation of visual gravitational motion in the human vestibular cortex.
Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F., Science 308(5720), 2005
PMID: 15831760
Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.
Indovina I, Maffei V, Pauwels K, Macaluso E, Orban GA, Lacquaniti F., Neuroimage 71(), 2013
PMID: 23321153
Sound-evoked vestibular stimulation affects the anticipation of gravity effects during visual self-motion.
Indovina I, Mazzarella E, Maffei V, Cesqui B, Passamonti L, Lacquaniti F., Exp Brain Res 233(8), 2015
PMID: 26003125
A representation of the hazard rate of elapsed time in macaque area LIP.
Janssen P, Shadlen MN., Nat. Neurosci. 8(2), 2005
PMID: 15657597
Temporal context calibrates interval timing.
Jazayeri M, Shadlen MN., Nat. Neurosci. 13(8), 2010
PMID: 20581842
A Neural Mechanism for Sensing and Reproducing a Time Interval.
Jazayeri M, Shadlen MN., Curr. Biol. 25(20), 2015
PMID: 26455307
Imagery of a moving object: the role of occipital cortex and human MT/V5+.
Kaas A, Weigelt S, Roebroeck A, Kohler A, Muckli L., Neuroimage 49(1), 2009
PMID: 19646536
Prospective versus predictive control in timing of hitting a falling ball.
Katsumata H, Russell DM., Exp Brain Res 216(4), 2011
PMID: 22120106
Neural extrapolation of motion for a ball rolling down an inclined plane.
La Scaleia B, Lacquaniti F, Zago M., PLoS ONE 9(6), 2014
PMID: 24940874
Hand interception of occluded motion in humans: a test of model-based vs. on-line control.
La Scaleia B, Zago M, Lacquaniti F., J. Neurophysiol. 114(3), 2015
PMID: 26133803
Gravity in the Brain as a Reference for Space and Time Perception.
Lacquaniti F, Bosco G, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M., Multisens Res 28(5-6), 2015
PMID: 26595949
Visual gravitational motion and the vestibular system in humans.
Lacquaniti F, Bosco G, Indovina I, La Scaleia B, Maffei V, Moscatelli A, Zago M., Front Integr Neurosci 7(), 2013
PMID: 24421761
Cortical mechanisms of smooth pursuit eye movements with target blanking. An fMRI study.
Lencer R, Nagel M, Sprenger A, Zapf S, Erdmann C, Heide W, Binkofski F., Eur. J. Neurosci. 19(5), 2004
PMID: 15016102
Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.
Maffei V, Macaluso E, Indovina I, Orban G, Lacquaniti F., J. Neurophysiol. 103(1), 2009
PMID: 19889846
Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.
Maffei V, Mazzarella E, Piras F, Spalletta G, Caltagirone C, Lacquaniti F, Daprati E., Cortex 78(), 2016
PMID: 27007069
A cognitive signal for the proactive timing of action in macaque LIP.
Maimon G, Assad JA., Nat. Neurosci. 9(7), 2006
PMID: 16751764
Tracking visible and occluded targets: changes in event related potentials during motion extrapolation.
Makin AD, Poliakoff E, El-Deredy W., Neuropsychologia 47(4), 2009
PMID: 19350707
Typical object velocity influences motion extrapolation.
Makin AD, Stewart AJ, Poliakoff E., Exp Brain Res 193(1), 2009
PMID: 19139868
The effect of previously viewed velocities on motion extrapolation.
Makin AD, Poliakoff E, Chen J, Stewart AJ., Vision Res. 48(18), 2008
PMID: 18588909
Corticospinal modulation induced by sounds depends on action preparedness.
Marinovic W, Tresilian JR, de Rugy A, Sidhu S, Riek S., J. Physiol. (Lond.) 592(1), 2013
PMID: 24081157
The Computational and Neural Basis of Rhythmic Timing in Medial Premotor Cortex.
Merchant H, Averbeck BB., J. Neurosci. 37(17), 2017
PMID: 28336572
Primate beta oscillations and rhythmic behaviors.
Merchant H, Bartolo R., J Neural Transm (Vienna) 125(3), 2017
PMID: 28364174
Neural responses during interception of real and apparent circularly moving stimuli in motor cortex and area 7a.
Merchant H, Battaglia-Mayer A, Georgopoulos AP., Cereb. Cortex 14(3), 2004
PMID: 14754870
Neural responses in motor cortex and area 7a to real and apparent motion.
Merchant H, Battaglia-Mayer A, Georgopoulos AP., Exp Brain Res 154(3), 2003
PMID: 14579000
Neurophysiology of perceptual and motor aspects of interception.
Merchant H, Georgopoulos AP., J. Neurophysiol. 95(1), 2006
PMID: 16339504
Measuring time with different neural chronometers during a synchronization-continuation task.
Merchant H, Zarco W, Perez O, Prado L, Bartolo R., Proc. Natl. Acad. Sci. U.S.A. 108(49), 2011
PMID: 22106292
Behavioral and neurophysiological aspects of target interception.
Merchant H, Zarco W, Prado L, Perez O., Adv. Exp. Med. Biol. 629(), 2009
PMID: 19227501
Vestibular nuclei and cerebellum put visual gravitational motion in context.
Miller WL, Maffei V, Bosco G, Iosa M, Zago M, Macaluso E, Lacquaniti F., J. Neurophysiol. 99(4), 2007
PMID: 18057110
Predicting curvilinear target motion through an occlusion.
Mrotek LA, Soechting JF., Exp Brain Res 178(1), 2006
PMID: 17053910
The cerebellum predicts the timing of perceptual events.
O'Reilly JX, Mesulam MM, Nobre AC., J. Neurosci. 28(9), 2008
PMID: 18305258
The assessment and analysis of handedness: the Edinburgh inventory.
Oldfield RC., Neuropsychologia 9(1), 1971
PMID: 5146491
Neuronal representation of occluded objects in the human brain.
Olson IR, Gatenby JC, Leung HC, Skudlarski P, Gore JC., Neuropsychologia 42(1), 2004
PMID: 14615079
Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI.
Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W., Neuropsychologia 41(13), 2003
PMID: 14527539
Effects of focal transcranial magnetic stimulation on simple reaction time to acoustic, visual and somatosensory stimuli.
Pascual-Leone A, Valls-Sole J, Wassermann EM, Brasil-Neto J, Cohen LG, Hallett M., Brain 115 ( Pt 4)(), 1992
PMID: 1393501
Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee.
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U., Clin Neurophysiol 126(6), 2015
PMID: 25797650
The dynamics of interhemispheric compensatory processes in mental imagery.
Sack AT, Camprodon JA, Pascual-Leone A, Goebel R., Science 308(5722), 2005
PMID: 15860630
How the visual brain encodes and keeps track of time.
Salvioni P, Murray MM, Kalmbach L, Bueti D., J. Neurosci. 33(30), 2013
PMID: 23884947
From monkeys to humans: what do we now know about brain homologies?
Sereno MI, Tootell RB., Curr. Opin. Neurobiol. 15(2), 2005
PMID: 15831394
Neural substrates of dynamic object occlusion.
Shuwairi SM, Curtis CE, Johnson SP., J Cogn Neurosci 19(8), 2007
PMID: 17651002
Extrapolation of visual motion for manual interception.
Soechting JF, Flanders M., J. Neurophysiol. 99(6), 2008
PMID: 18436629
Models for the extrapolation of target motion for manual interception.
Soechting JF, Juveli JZ, Rao HM., J. Neurophysiol. 102(3), 2009
PMID: 19571194
Programs for action in superior parietal cortex: a triple-pulse TMS investigation.
Striemer CL, Chouinard PA, Goodale MA., Neuropsychologia 49(9), 2011
PMID: 21539851
Visual topography of human intraparietal sulcus.
Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC., J. Neurosci. 27(20), 2007
PMID: 17507555
Improved motion perception and impaired spatial suppression following disruption of cortical area MT/V5.
Tadin D, Silvanto J, Pascual-Leone A, Battelli L., J. Neurosci. 31(4), 2011
PMID: 21273412
Use of visual information in the correction of interceptive actions.
Teixeira LA, Chua R, Nagelkerke P, Franks IM., Exp Brain Res 175(4), 2006
PMID: 17051375
Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation.
Terao Y, Ugawa Y, Suzuki M, Sakai K, Hanajima R, Gemba-Shimizu K, Kanazawa I., Exp Brain Res 115(3), 1997
PMID: 9262209
Effects of acoustic startle stimuli on interceptive action.
Tresilian JR, Plooy AM., Neuroscience 142(2), 2006
PMID: 16904270
TMS over V5 disrupts motion prediction.
Vetter P, Grosbras MH, Muckli L., Cereb. Cortex 25(4), 2013
PMID: 24152544
Timing of anticipatory muscle tensing control: responses before and after expected impact.
Vishton PM, Reardon KM, Stevens JA., Exp Brain Res 202(3), 2010
PMID: 20135099
Rhythm makes the world go round: An MEG-TMS study on the role of right TPJ theta oscillations in embodied perspective taking.
Wang H, Callaghan E, Gooding-Williams G, McAllister C, Kessler K., Cortex 75(), 2015
PMID: 26722994
Parietal activity and the perceived direction of ambiguous apparent motion.
Williams ZM, Elfar JC, Eskandar EN, Toth LJ, Assad JA., Nat. Neurosci. 6(6), 2003
PMID: 12730699
Extrapolation of vertical target motion through a brief visual occlusion.
Zago M, Iosa M, Maffei V, Lacquaniti F., Exp Brain Res 201(3), 2009
PMID: 19882150
Internal models and prediction of visual gravitational motion.
Zago M, McIntyre J, Senot P, Lacquaniti F., Vision Res. 48(14), 2008
PMID: 18499213
Visuo-motor coordination and internal models for object interception.
Zago M, McIntyre J, Senot P, Lacquaniti F., Exp Brain Res 192(4), 2009
PMID: 19139857

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28701531
PubMed | Europe PMC

Suchen in

Google Scholar