Translational chemistry meets gluten-related disorders

Lammers KM, Herrera MG, Dodero VI (2018)
ChemistryOpen 7(3): 217-232.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 4.26 MB
Autor*in
Lammers, Karen M.; Herrera, Maria G.; Dodero, Veronica IsabelUniBi
Abstract / Bemerkung
Gluten‐related disorders are a complex group of diseases that involve the activation of the immune system triggered by the ingestion of gluten. Among these, celiac disease, with a prevalence of 1 %, is the most investigated, but recently, a new pathology, named nonceliac gluten sensitivity, was reported with a general prevalence of 7 %. Finally, there other less‐prevalent gluten‐related diseases such as wheat allergy, gluten ataxia, and dermatitis herpetiformis (with an overall prevalence of less than 0.1 %). As mentioned, the common molecular trigger is gluten, a complex mixture of storage proteins present in wheat, barley, and a variety of oats that are not fully degraded by humans. The most‐studied protein related to disease is gliadin, present in wheat, which possesses in its sequence many pathological fragments. Despite a lot of effort to treat these disorders, the only effective method is a long‐life gluten‐free diet. This Review summarizes the actual knowledge of gluten‐related disorders from a translational chemistry point of view. We discuss what is currently known from the literature about the interaction of gluten with the gut and the critical host responses it evokes and, finally, connect them to our current and novel molecular understanding of the supramolecular organization of gliadin and the 33‐mer gliadin peptide fragment under physiological conditions.
Erscheinungsjahr
2018
Zeitschriftentitel
ChemistryOpen
Band
7
Ausgabe
3
Seite(n)
217-232
ISSN
2191-1363
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2918721

Zitieren

Lammers KM, Herrera MG, Dodero VI. Translational chemistry meets gluten-related disorders. ChemistryOpen. 2018;7(3):217-232.
Lammers, K. M., Herrera, M. G., & Dodero, V. I. (2018). Translational chemistry meets gluten-related disorders. ChemistryOpen, 7(3), 217-232. doi:10.1002/open.201700197
Lammers, Karen M., Herrera, Maria G., and Dodero, Veronica Isabel. 2018. “Translational chemistry meets gluten-related disorders”. ChemistryOpen 7 (3): 217-232.
Lammers, K. M., Herrera, M. G., and Dodero, V. I. (2018). Translational chemistry meets gluten-related disorders. ChemistryOpen 7, 217-232.
Lammers, K.M., Herrera, M.G., & Dodero, V.I., 2018. Translational chemistry meets gluten-related disorders. ChemistryOpen, 7(3), p 217-232.
K.M. Lammers, M.G. Herrera, and V.I. Dodero, “Translational chemistry meets gluten-related disorders”, ChemistryOpen, vol. 7, 2018, pp. 217-232.
Lammers, K.M., Herrera, M.G., Dodero, V.I.: Translational chemistry meets gluten-related disorders. ChemistryOpen. 7, 217-232 (2018).
Lammers, Karen M., Herrera, Maria G., and Dodero, Veronica Isabel. “Translational chemistry meets gluten-related disorders”. ChemistryOpen 7.3 (2018): 217-232.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung-Nicht kommerziell 4.0 International (CC BY-NC 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:58Z
MD5 Prüfsumme
80cfdf4229b02e23728575560e5ec524


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

142 References

Daten bereitgestellt von Europe PubMed Central.

Defining translational research: implications for training.
Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, Platt LD, Baez A, Esposito K., Acad Med 85(3), 2010
PMID: 20182120
Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry.
Quirolo ZB, Benedini LA, Sequeira MA, Herrera MG, Veuthey TV, Dodero VI., Curr Top Med Chem 14(6), 2014
PMID: 24444155

AUTHOR UNKNOWN, 2016
Nonceliac gluten sensitivity.
Fasano A, Sapone A, Zevallos V, Schuppan D., Gastroenterology 148(6), 2015
PMID: 25583468
ACG clinical guidelines: diagnosis and management of celiac disease.
Rubio-Tapia A, Hill ID, Kelly CP, Calderwood AH, Murray JA; American College of Gastroenterology., Am. J. Gastroenterol. 108(5), 2013
PMID: 23609613

AUTHOR UNKNOWN, 0
Celiac disease: an immunological jigsaw.
Meresse B, Malamut G, Cerf-Bensussan N., Immunity 36(6), 2012
PMID: 22749351
Human leukocyte antigen DQ2.2 and celiac disease.
Mubarak A, Spierings E, Wolters V, van Hoogstraten I, Kneepkens CM, Houwen R., J. Pediatr. Gastroenterol. Nutr. 56(4), 2013
PMID: 23085892

AUTHOR UNKNOWN, 0
Celiac disease: caught between a rock and a hard place.
Koning F., Gastroenterology 129(4), 2005
PMID: 16230082

AUTHOR UNKNOWN, 2012
Diagnosis of gluten related disorders: Celiac disease, wheat allergy and non-celiac gluten sensitivity.
Elli L, Branchi F, Tomba C, Villalta D, Norsa L, Ferretti F, Roncoroni L, Bardella MT., World J. Gastroenterol. 21(23), 2015
PMID: 26109797
Spectrum of gluten-related disorders: consensus on new nomenclature and classification.
Sapone A, Bai JC, Ciacci C, Dolinsek J, Green PH, Hadjivassiliou M, Kaukinen K, Rostami K, Sanders DS, Schumann M, Ullrich R, Villalta D, Volta U, Catassi C, Fasano A., BMC Med 10(), 2012
PMID: 22313950
Celiac disease: prevalence, diagnosis, pathogenesis and treatment.
Gujral N, Freeman HJ, Thomson AB., World J. Gastroenterol. 18(42), 2012
PMID: 23155333

AUTHOR UNKNOWN, 0
Celiac disease.
Rubio-Tapia A, Murray JA., Curr. Opin. Gastroenterol. 26(2), 2010
PMID: 20040864
Extraintestinal manifestations of coeliac disease.
Leffler DA, Green PH, Fasano A., Nat Rev Gastroenterol Hepatol 12(10), 2015
PMID: 26260366

AUTHOR UNKNOWN, 0
Shared and distinct genetic variants in type 1 diabetes and celiac disease.
Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, Howson JM, Stevens H, McManus R, Wijmenga C, Heap GA, Dubois PC, Clayton DG, Hunt KA, van Heel DA, Todd JA., N. Engl. J. Med. 359(26), 2008
PMID: 19073967
Celiac disease and autoimmunity: review and controversies.
Denham JM, Hill ID., Curr Allergy Asthma Rep 13(4), 2013
PMID: 23681421
Coeliac disease: review of diagnosis and management.
Walker MM, Ludvigsson JF, Sanders DS., Med. J. Aust. 207(4), 2017
PMID: 28814219

AUTHOR UNKNOWN, 0
Celiac disease: understanding the gluten-free diet.
Bascunan KA, Vespa MC, Araya M., Eur J Nutr 56(2), 2016
PMID: 27334430

AUTHOR UNKNOWN, 0
Classification and management of refractory coeliac disease.
Rubio-Tapia A, Murray JA., Gut 59(4), 2010
PMID: 20332526
Refractory celiac disease.
Ryan BM, Kelleher D., Gastroenterology 119(1), 2000
PMID: 10889175

AUTHOR UNKNOWN, 0
Non-dietary methods in the treatment of celiac disease.
Szaflarska-Poplawska A., Prz Gastroenterol 10(1), 2015
PMID: 25960809

AUTHOR UNKNOWN, 2015
Glutenase ALV003 attenuates gluten-induced mucosal injury in patients with celiac disease.
Lahdeaho ML, Kaukinen K, Laurila K, Vuotikka P, Koivurova OP, Karja-Lahdensuu T, Marcantonio A, Adelman DC, Maki M., Gastroenterology 146(7), 2014
PMID: 24583059

AUTHOR UNKNOWN, 0
Consumption of gluten with gluten-degrading enzyme by celiac patients: a pilot-study.
Tack GJ, van de Water JM, Bruins MJ, Kooy-Winkelaar EM, van Bergen J, Bonnet P, Vreugdenhil AC, Korponay-Szabo I, Edens L, von Blomberg BM, Schreurs MW, Mulder CJ, Koning F., World J. Gastroenterol. 19(35), 2013
PMID: 24124328
Influence of dietary components on Aspergillus niger prolyl endoprotease mediated gluten degradation.
Montserrat V, Bruins MJ, Edens L, Koning F., Food Chem 174(), 2014
PMID: 25529703
The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study.
Paterson BM, Lammers KM, Arrieta MC, Fasano A, Meddings JB., Aliment. Pharmacol. Ther. 26(5), 2007
PMID: 17697209
Celiac disease, inflammation and oxidative damage: a nutrigenetic approach.
Ferretti G, Bacchetti T, Masciangelo S, Saturni L., Nutrients 4(4), 2012
PMID: 22606367
Chemistry of gluten proteins.
Wieser H., Food Microbiol. 24(2), 2006
PMID: 17008153
Wheat (Triticum aestivum L.) [gamma]-Gliadin Accumulates in Dense Protein Bodies within the Endoplasmic Reticulum of Yeast.
Rosenberg N, Shimoni Y, Altschuler Y, Levanony H, Volokita M, Galili G., Plant Physiol. 102(1), 1993
PMID: 12231798
Extraction, separation, and purification of wheat gluten proteins and related proteins of barley, rye, and oats.
Tatham AS, Gilbert SM, Fido RJ, Shewry PR., Methods Mol. Med. 41(), 2000
PMID: 21374432

AUTHOR UNKNOWN, 0
Structural basis for gluten intolerance in celiac sprue.
Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C., Science 297(5590), 2002
PMID: 12351792

AUTHOR UNKNOWN, 2002

AUTHOR UNKNOWN, 1907
Microcellular foams made from gliadin.
Quester S, Dahesh M, Strey R., Colloid Polym Sci 292(9), 2014
PMID: 25190899
Disulphide bonds in wheat gluten proteins.
Shewry PR, Tatham AS., J. Cereal Sci. 25(3), 1997
PMID: IND20604631

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2000
The prolamin storage proteins of cereal seeds: structure and evolution.
Shewry PR, Tatham AS., Biochem. J. 267(1), 1990
PMID: 2183790

AUTHOR UNKNOWN, 1995

AUTHOR UNKNOWN, 2013
New insight into the solution structures of wheat gluten proteins from Raman optical activity.
Blanch EW, Kasarda DD, Hecht L, Nielsen K, Barron LD., Biochemistry 42(19), 2003
PMID: 12741823

AUTHOR UNKNOWN, 2014

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2015
Evaluation of gliadins nanoparticles as drug delivery systems: a study of three different drugs.
Duclairoir C, Orecchioni AM, Depraetere P, Osterstock F, Nakache E., Int J Pharm 253(1-2), 2003
PMID: 12593944
Reversible Aggregation of alpha-Gliadin to Fibrils.
Kasarda DD, Bernardin JE, Thomas RS., Science 155(3759), 1967
PMID: 17738226
Molecular Assembly of Wheat Gliadins into Nanostructures: A Small-Angle X-ray Scattering Study of Gliadins in Distilled Water over a Wide Concentration Range.
Sato N, Matsumiya A, Higashino Y, Funaki S, Kitao Y, Oba Y, Inoue R, Arisaka F, Sugiyama M, Urade R., J. Agric. Food Chem. 63(39), 2015
PMID: 26365302

AUTHOR UNKNOWN, 2016
Anatomical basis of tolerance and immunity to intestinal antigens.
Mowat AM., Nat. Rev. Immunol. 3(4), 2003
PMID: 12669023

AUTHOR UNKNOWN, 0
The dendritic cell system and its role in immunogenicity.
Steinman RM., Annu. Rev. Immunol. 9(), 1991
PMID: 1910679
Pathways of antigen processing.
Blum JS, Wearsch PA, Cresswell P., Annu. Rev. Immunol. 31(), 2013
PMID: 23298205

AUTHOR UNKNOWN, 0
Spontaneous secretion of interferon gamma and interleukin 4 by human intraepithelial and lamina propria gut lymphocytes.
Carol M, Lambrechts A, Van Gossum A, Libin M, Goldman M, Mascart-Lemone F., Gut 42(5), 1998
PMID: 9659157
T cells of the human intestinal lamina propria are high producers of interleukin-10.
Braunstein J, Qiao L, Autschbach F, Schurmann G, Meuer S., Gut 41(2), 1997
PMID: 9301501
Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease.
Nilsen EM, Jahnsen FL, Lundin KE, Johansen FE, Fausa O, Sollid LM, Jahnsen J, Scott H, Brandtzaeg P., Gastroenterology 115(3), 1998
PMID: 9721152

AUTHOR UNKNOWN, 0
TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin.
Castellanos-Rubio A, Santin I, Irastorza I, Castano L, Carlos Vitoria J, Ramon Bilbao J., Autoimmunity 42(1), 2009
PMID: 19127457
Differential mucosal IL-17 expression in two gliadin-induced disorders: gluten sensitivity and the autoimmune enteropathy celiac disease.
Sapone A, Lammers KM, Mazzarella G, Mikhailenko I, Carteni M, Casolaro V, Fasano A., Int. Arch. Allergy Immunol. 152(1), 2009
PMID: 19940509

AUTHOR UNKNOWN, 0
Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function.
Clemente MG, De Virgiliis S, Kang JS, Macatagney R, Musu MP, Di Pierro MR, Drago S, Congia M, Fasano A., Gut 52(2), 2003
PMID: 12524403
Alterations in intestinal permeability.
Arrieta MC, Bistritz L, Meddings JB., Gut 55(10), 2006
PMID: 16966705
Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3.
Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, Rallabhandi P, Shea-Donohue T, Tamiz A, Alkan S, Netzel-Arnett S, Antalis T, Vogel SN, Fasano A., Gastroenterology 135(1), 2008
PMID: 18485912
Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2.
Tripathi A, Lammers KM, Goldblum S, Shea-Donohue T, Netzel-Arnett S, Buzza MS, Antalis TM, Vogel SN, Zhao A, Yang S, Arrietta MC, Meddings JB, Fasano A., Proc. Natl. Acad. Sci. U.S.A. 106(39), 2009
PMID: 19805376
Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease.
Barone MV, Gimigliano A, Castoria G, Paolella G, Maurano F, Paparo F, Maglio M, Mineo A, Miele E, Nanayakkara M, Troncone R, Auricchio S., Gut 56(4), 2006
PMID: 16891357

AUTHOR UNKNOWN, 2006
Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines.
Drago S, El Asmar R, Di Pierro M, Grazia Clemente M, Tripathi A, Sapone A, Thakar M, Iacono G, Carroccio A, D'Agate C, Not T, Zampini L, Catassi C, Fasano A., Scand. J. Gastroenterol. 41(4), 2006
PMID: 16635908
Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease.
Fasano A, Not T, Wang W, Uzzau S, Berti I, Tommasini A, Goldblum SE., Lancet 355(9214), 2000
PMID: 10801176

AUTHOR UNKNOWN, 2014
Tissue-mediated control of immunopathology in coeliac disease.
Jabri B, Sollid LM., Nat. Rev. Immunol. 9(12), 2009
PMID: 19935805
Induction of apoptosis in caco-2 cells by wheat gliadin peptides.
Giovannini C, Sanchez M, Straface E, Scazzocchio B, Silano M, De Vincenzi M., Toxicology 145(1), 2000
PMID: 10771132
Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease.
Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B., Immunity 21(3), 2004
PMID: 15357947
Adaptive and innate immune responses in celiac disease.
Gianfrani C, Auricchio S, Troncone R., Immunol. Lett. 99(2), 2005
PMID: 15876458
Activation of macrophages by gliadin fragments: isolation and characterization of active peptide.
Tuckova L, Novotna J, Novak P, Flegelova Z, Kveton T, Jelinkova L, Zidek Z, Man P, Tlaskalova-Hogenova H., J. Leukoc. Biol. 71(4), 2002
PMID: 11927649
Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB.
Jelinkova L, Tuckova L, Cinova J, Flegelova Z, Tlaskalova-Hogenova H., FEBS Lett. 571(1-3), 2004
PMID: 15280021

AUTHOR UNKNOWN, 2013
Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4.
Junker Y, Zeissig S, Kim SJ, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D., J. Exp. Med. 209(13), 2012
PMID: 23209313

AUTHOR UNKNOWN, 2015
TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function.
Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR., Nature 453(7192), 2008
PMID: 18368049

AUTHOR UNKNOWN, 0
Increased FOXP3 expression in small-bowel mucosa of children with coeliac disease and type I diabetes mellitus.
Vorobjova T, Uibo O, Heilman K, Rago T, Honkanen J, Vaarala O, Tillmann V, Ojakivi I, Uibo R., Scand. J. Gastroenterol. 44(4), 2009
PMID: 19096978
Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes.
Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O., Clin. Exp. Immunol. 152(3), 2008
PMID: 18435801

AUTHOR UNKNOWN, 0
Proinflammatory cytokine interferon-γ and microbiome-derived metabolites dictate epigenetic switch between forkhead box protein 3 isoforms in coeliac disease.
Serena G, Yan S, Camhi S, Patel S, Lima RS, Sapone A, Leonard MM, Mukherjee R, Nath BJ, Lammers KM, Fasano A., Clin. Exp. Immunol. 187(3), 2017
PMID: 27936497
Regulatory T-cell function is impaired in celiac disease.
Granzotto M, dal Bo S, Quaglia S, Tommasini A, Piscianz E, Valencic E, Ferrara F, Martelossi S, Ventura A, Not T., Dig. Dis. Sci. 54(7), 2008
PMID: 18975083
Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue.
Shan L, Qiao SW, Arentz-Hansen H, Molberg O, Gray GM, Sollid LM, Khosla C., J. Proteome Res. 4(5), 2005
PMID: 16212427

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2007
In vitro activities of A-gliadin-related synthetic peptides: damaging effect on the atrophic coeliac mucosa and activation of mucosal immune response in the treated coeliac mucosa.
Maiuri L, Troncone R, Mayer M, Coletta S, Picarelli A, De Vincenzi M, Pavone V, Auricchio S., Scand. J. Gastroenterol. 31(3), 1996
PMID: 8833354

AUTHOR UNKNOWN, 0
Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease.
Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, Auricchio S, Picard J, Osman M, Quaratino S, Londei M., Lancet 362(9377), 2003
PMID: 12853196

AUTHOR UNKNOWN, 2004

AUTHOR UNKNOWN, 2016

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2010
The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase.
Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Vader W, Kooy YM, Lundin KE, Koning F, Roepstorff P, Sollid LM, McAdam SN., J. Exp. Med. 191(4), 2000
PMID: 10684852
Lysosomal accumulation of gliadin p31-43 peptide induces oxidative stress and tissue transglutaminase-mediated PPARgamma downregulation in intestinal epithelial cells and coeliac mucosa.
Luciani A, Villella VR, Vasaturo A, Giardino I, Pettoello-Mantovani M, Guido S, Cexus ON, Peake N, Londei M, Quaratino S, Maiuri L., Gut 59(3), 2009
PMID: 19951908
Interaction of 'toxic' and 'immunogenic' A-gliadin peptides with a membrane-mimetic environment.
Vilasi S, Sirangelo I, Irace G, Caputo I, Barone MV, Esposito C, Ragone R., J. Mol. Recognit. 23(3), 2010
PMID: 19771572
The toxic alpha-gliadin peptide 31-43 enters cells without a surface membrane receptor.
Paolella G, Lepretti M, Martucciello S, Nanayakkara M, Auricchio S, Esposito C, Barone MV, Caputo I., Cell Biol. Int. 42(1), 2017
PMID: 28914468
Mechanisms of epithelial translocation of the alpha(2)-gliadin-33mer in coeliac sprue.
Schumann M, Richter JF, Wedell I, Moos V, Zimmermann-Kordmann M, Schneider T, Daum S, Zeitz M, Fromm M, Schulzke JD., Gut 57(6), 2008
PMID: 18305066
Paracellular versus transcellular intestinal permeability to gliadin peptides in active celiac disease.
Menard S, Lebreton C, Schumann M, Matysiak-Budnik T, Dugave C, Bouhnik Y, Malamut G, Cellier C, Allez M, Crenn P, Schulzke JD, Cerf-Bensussan N, Heyman M., Am. J. Pathol. 180(2), 2011
PMID: 22119716

AUTHOR UNKNOWN, 0
Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease.
Matysiak-Budnik T, Moura IC, Arcos-Fajardo M, Lebreton C, Menard S, Candalh C, Ben-Khalifa K, Dugave C, Tamouza H, van Niel G, Bouhnik Y, Lamarque D, Chaussade S, Malamut G, Cellier C, Cerf-Bensussan N, Monteiro RC, Heyman M., J. Exp. Med. 205(1), 2007
PMID: 18166587
Pathways of gliadin transport in celiac disease.
Heyman M, Menard S., Ann. N. Y. Acad. Sci. 1165(), 2009
PMID: 19538316

AUTHOR UNKNOWN, 2013

AUTHOR UNKNOWN, 2008
Detection of gluten immunogenic peptides in the urine of patients with coeliac disease reveals transgressions in the gluten-free diet and incomplete mucosal healing.
Moreno ML, Cebolla A, Munoz-Suano A, Carrillo-Carrion C, Comino I, Pizarro A, Leon F, Rodriguez-Herrera A, Sousa C., Gut 66(2), 2015
PMID: 26608460
Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization.
Herrera MG, Zamarreno F, Costabel M, Ritacco H, Hutten A, Sewald N, Dodero VI., Biopolymers 101(1), 2014
PMID: 23703327
Self-assembly of 33-mer gliadin peptide oligomers.
Herrera MG, Benedini LA, Lonez C, Schilardi PL, Hellweg T, Ruysschaert JM, Dodero VI., Soft Matter 11(44), 2015
PMID: 26376290
ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins.
Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V., Biochim. Biophys. Acta 1828(10), 2013
PMID: 23746423

AUTHOR UNKNOWN, 2008
Structural changes in amelogenin upon self-assembly and mineral interactions.
Beniash E, Simmer JP, Margolis HC., J. Dent. Res. 91(10), 2012
PMID: 22933608
The amyloid state and its association with protein misfolding diseases.
Knowles TP, Vendruscolo M, Dobson CM., Nat. Rev. Mol. Cell Biol. 15(6), 2014
PMID: 24854788
Conserved features of intermediates in amyloid assembly determine their benign or toxic states.
Krishnan R, Goodman JL, Mukhopadhyay S, Pacheco CD, Lemke EA, Deniz AA, Lindquist S., Proc. Natl. Acad. Sci. U.S.A. 109(28), 2012
PMID: 22745165

AUTHOR UNKNOWN, 0
Glutamine repeats and inherited neurodegenerative diseases: molecular aspects.
Perutz MF., Curr. Opin. Struct. Biol. 6(6), 1996
PMID: 8994886
Polyglutamine Fibrils: New Insights into Antiparallel β-Sheet Conformational Preference and Side Chain Structure.
Punihaole D, Workman RJ, Hong Z, Madura JD, Asher SA., J Phys Chem B 120(12), 2016
PMID: 26947327
Glutamine repeats and neurodegeneration.
Zoghbi HY, Orr HT., Annu. Rev. Neurosci. 23(), 2000
PMID: 10845064
Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration.
Bruun SW, Josefsen K, Tanassi JT, Marek A, Pedersen MH, Sidenius U, Haupt-Jorgensen M, Antvorskov JC, Larsen J, Heegaard NH, Buschard K., J Diabetes Res 2016(), 2016
PMID: 27795959
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29531885
PubMed | Europe PMC

Suchen in

Google Scholar