Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events

Grabot L, Kösem A, Azizi L, van Wassenhove V (2017)
Journal of Cognitive Neuroscience 29(9): 1566-1582.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Grabot, LaetitiaUniBi; Kösem, Anne; Azizi, Leila; van Wassenhove, Virginie
Abstract / Bemerkung
Perceiving the temporal order of sensory events typically depends on participants' attentional state, thus likely on the endogenous fluctuations of brain activity. Using magnetoencephalography, we sought to determine whether spontaneous brain oscillations could disambiguate the perceived order of auditory and visual events presented in close temporal proximity, that is, at the individual's perceptual order threshold (Point of Subjective Simultaneity [PSS]). Two neural responses were found to index an individual's temporal order perception when contrasting brain activity as a function of perceived order (i.e., perceiving the sound first vs. perceiving the visual event first) given the same physical audiovisual sequence. First, average differences in prestimulus auditory alpha power indicated perceiving the correct ordering of audiovisual events irrespective of which sensory modality came first: a relatively low alpha power indicated perceiving auditory or visual first as a function of the actual sequence order. Additionally, the relative changes in the amplitude of the auditory (but not visual) evoked responses were correlated with participant's correct performance. Crucially, the sign of the magnitude difference in prestimulus alpha power and evoked responses between perceived audiovisual orders correlated with an individual's PSS. Taken together, our results suggest that spontaneous oscillatory activity cannot disambiguate subjective temporal order without prior knowledge of the individual's bias toward perceiving one or the other sensory modality first. Altogether, our results suggest that, under high perceptual uncertainty, the magnitude of prestimulus alpha (de)synchronization indicates the amount of compensation needed to overcome an individual's prior in the serial ordering and temporal sequencing of information.
Journal of Cognitive Neuroscience
0898-929X, 1530-8898
Page URI


Grabot L, Kösem A, Azizi L, van Wassenhove V. Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events. Journal of Cognitive Neuroscience. 2017;29(9):1566-1582.
Grabot, L., Kösem, A., Azizi, L., & van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events. Journal of Cognitive Neuroscience, 29(9), 1566-1582. doi:10.1162/jocn_a_01145
Grabot, Laetitia, Kösem, Anne, Azizi, Leila, and van Wassenhove, Virginie. 2017. “Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events”. Journal of Cognitive Neuroscience 29 (9): 1566-1582.
Grabot, L., Kösem, A., Azizi, L., and van Wassenhove, V. (2017). Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events. Journal of Cognitive Neuroscience 29, 1566-1582.
Grabot, L., et al., 2017. Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events. Journal of Cognitive Neuroscience, 29(9), p 1566-1582.
L. Grabot, et al., “Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events”, Journal of Cognitive Neuroscience, vol. 29, 2017, pp. 1566-1582.
Grabot, L., Kösem, A., Azizi, L., van Wassenhove, V.: Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events. Journal of Cognitive Neuroscience. 29, 1566-1582 (2017).
Grabot, Laetitia, Kösem, Anne, Azizi, Leila, and van Wassenhove, Virginie. “Prestimulus Alpha Oscillations and the Temporal Sequencing of Audiovisual Events”. Journal of Cognitive Neuroscience 29.9 (2017): 1566-1582.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

81 References

Daten bereitgestellt von Europe PubMed Central.

The decoupled mind: mind-wandering disrupts cortical phase-locking to perceptual events.
Baird B, Smallwood J, Lutz A, Schooler JW., J Cogn Neurosci 26(11), 2014
PMID: 24742189
The phase of ongoing EEG oscillations predicts visual perception.
Busch NA, Dubois J, VanRullen R., J. Neurosci. 29(24), 2009
PMID: 19535598
Phase-resetting as a tool of information transmission.
Canavier CC., Curr. Opin. Neurobiol. 31(), 2014
PMID: 25529003
Individual differences in alpha frequency drive crossmodal illusory perception.
Cecere R, Rees G, Romei V., Curr. Biol. 25(2), 2014
PMID: 25544613
Conscious updating is a rhythmic process.
Chakravarthi R, Vanrullen R., Proc. Natl. Acad. Sci. U.S.A. 109(26), 2012
PMID: 22689974
Endogenous modulation of low frequency oscillations by temporal expectations.
Cravo AM, Rohenkohl G, Wyart V, Nobre AC., J. Neurophysiol. 106(6), 2011
PMID: 21900508
Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity.
Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E., Neuron 26(1), 2000
PMID: 10798392
Alpha rhythm of the EEG modulates visual detection performance in humans.
Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y., Brain Res Cogn Brain Res 20(3), 2004
PMID: 15268915
Sight and sound out of synch: fragmentation and renormalisation of audiovisual integration and subjective timing.
Freeman ED, Ipser A, Palmbaha A, Paunoiu D, Brown P, Lambert C, Leff A, Driver J., Cortex 49(10), 2013
PMID: 23664001
Recalibration of audiovisual simultaneity.
Fujisaki W, Shimojo S, Kashino M, Nishida S., Nat. Neurosci. 7(7), 2004
PMID: 15195098
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
Genovese CR, Lazar NA, Nichols T., Neuroimage 15(4), 2002
PMID: 11906227

Time Order as Psychological Bias.
Grabot L, van Wassenhove V., Psychol Sci 28(5), 2017
PMID: 28485701
MEG and EEG data analysis with MNE-Python.
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hamalainen M., Front Neurosci 7(), 2013
PMID: 24431986
MNE software for processing MEG and EEG data.
Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Parkkonen L, Hamalainen MS., Neuroimage 86(), 2013
PMID: 24161808
Inter- and intra-individual variability in alpha peak frequency.
Haegens S, Cousijn H, Wallis G, Harrison PJ, Nobre AC., Neuroimage 92(), 2014
PMID: 24508648
Prestimulus oscillations predict visual perception performance between and within subjects.
Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bauml KH., Neuroimage 37(4), 2007
PMID: 17706433
The role of α oscillations in temporal attention.
Hanslmayr S, Gross J, Klimesch W, Shapiro KL., Brain Res Rev 67(1-2), 2011
PMID: 21592583
Recalibration of perceived time across sensory modalities.
Hanson JV, Heron J, Whitaker D., Exp Brain Res 185(2), 2008
PMID: 18236035
Episodic sequence memory is supported by a theta-gamma phase code.
Heusser AC, Poeppel D, Ezzyat Y, Davachi L., Nat. Neurosci. 19(10), 2016
PMID: 27571010
Spontaneous Neural Oscillations Bias Perception by Modulating Baseline Excitability.
Iemi L, Chaumon M, Crouzet SM, Busch NA., J. Neurosci. 37(4), 2017
PMID: 28123017

An oscillatory mechanism for prioritizing salient unattended stimuli.
Jensen O, Bonnefond M, VanRullen R., Trends Cogn. Sci. (Regul. Ed.) 16(4), 2012
PMID: 22436764
Modality-independent role of the primary auditory cortex in time estimation.
Kanai R, Lloyd H, Bueti D, Walsh V., Exp Brain Res 209(3), 2011
PMID: 21318347
α-band oscillations, attention, and controlled access to stored information.
Klimesch W., Trends Cogn. Sci. (Regul. Ed.) 16(12), 2012
PMID: 23141428
EEG alpha oscillations: the inhibition-timing hypothesis.
Klimesch W, Sauseng P, Hanslmayr S., Brain Res Rev 53(1), 2006
PMID: 16887192
Encoding of event timing in the phase of neural oscillations.
Kosem A, Gramfort A, van Wassenhove V., Neuroimage 92(), 2014
PMID: 24531044
Temporal structure in audiovisual sensory selection.
Kosem A, van Wassenhove V., PLoS ONE 7(7), 2012
PMID: 22829899
The role of alpha oscillations for illusory perception.
Lange J, Keil J, Schnitzler A, van Dijk H, Weisz N., Behav. Brain Res. 271(), 2014
PMID: 24931795
The θ-γ neural code.
Lisman JE, Jensen O., Neuron 77(6), 2013
PMID: 23522038
Hysteresis in audiovisual synchrony perception.
Martin JR, Kosem A, van Wassenhove V., PLoS ONE 10(3), 2015
PMID: 25774653
Rescuing stimuli from invisibility: Inducing a momentary release from visual masking with pre-target entrainment.
Mathewson KE, Fabiani M, Gratton G, Beck DM, Lleras A., Cognition 115(1), 2009
PMID: 20035933
To see or not to see: prestimulus alpha phase predicts visual awareness.
Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T., J. Neurosci. 29(9), 2009
PMID: 19261866
Region-specific modulations in oscillatory alpha activity serve to facilitate processing in the visual and auditory modalities.
Mazaheri A, van Schouwenburg MR, Dimitrijevic A, Denys D, Cools R, Jensen O., Neuroimage 87(), 2013
PMID: 24188814
Neural basis of auditory-induced shifts in visual time-order perception.
McDonald JJ, Teder-Salejarvi WA, Di Russo F, Hillyard SA., Nat. Neurosci. 8(9), 2005
PMID: 16056224

Pre-semantically defined temporal windows for cognitive processing.
Poppel E., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364(1525), 2009
PMID: 19487191
Sensory integration within temporally neutral systems states: a hypothesis.
Poppel E, Schill K, von Steinbuchel N., Naturwissenschaften 77(2), 1990
PMID: 2314478
Some characteristics of average steady-state and transient responses evoked by modulated light.
Regan D., Electroencephalogr Clin Neurophysiol 20(3), 1966
PMID: 4160391
Brain Networks and α-Oscillations: Structural and Functional Foundations of Cognitive Control.
Sadaghiani S, Kleinschmidt A., Trends Cogn. Sci. (Regul. Ed.) 20(11), 2016
PMID: 27707588
Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction.
Samaha J, Bauer P, Cimaroli S, Postle BR., Proc. Natl. Acad. Sci. U.S.A. 112(27), 2015
PMID: 26100913
A shift of visual spatial attention is selectively associated with human EEG alpha activity.
Sauseng P, Klimesch W, Stadler W, Schabus M, Doppelmayr M, Hanslmayr S, Gruber WR, Birbaumer N., Eur. J. Neurosci. 22(11), 2005
PMID: 16324126
Low-frequency neuronal oscillations as instruments of sensory selection.
Schroeder CE, Lakatos P., Trends Neurosci. 32(1), 2008
PMID: 19012975
Prior-entry: a review.
Spence C, Parise C., Conscious Cogn 19(1), 2009
PMID: 20056554

Phase entrainment of human delta oscillations can mediate the effects of expectation on reaction speed.
Stefanics G, Hangya B, Hernadi I, Winkler I, Lakatos P, Ulbert I., J. Neurosci. 30(41), 2010
PMID: 20943899
Neural correlates of multisensory integration of ecologically valid audiovisual events.
Stekelenburg JJ, Vroomen J., J Cogn Neurosci 19(12), 2007
PMID: 17892381
When is now? Perception of simultaneity.
Stone JV, Hunkin NM, Porrill J, Wood R, Keeler V, Beanland M, Port M, Porter NR., Proc. Biol. Sci. 268(1462), 2001
PMID: 12123295
Alpha phase determines successful lexical decision in noise.
Strauß A, Henry MJ, Scharinger M, Obleser J., J. Neurosci. 35(7), 2015
PMID: 25698760
Cross-modal phase reset predicts auditory task performance in humans.
Thorne JD, De Vos M, Viola FC, Debener S., J. Neurosci. 31(10), 2011
PMID: 21389240
Signal-space projection method for separating MEG or EEG into components.
Uusitalo MA, Ilmoniemi RJ., Med Biol Eng Comput 35(2), 1997
PMID: 9136207
Rapid temporal recalibration is unique to audiovisual stimuli.
Van der Burg E, Orchard-Mills E, Alais D., Exp Brain Res 233(1), 2014
PMID: 25200176
Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations.
van Diepen RM, Cohen MX, Denys D, Mazaheri A., J Cogn Neurosci 27(8), 2015
PMID: 25774428
Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.
van Dijk H, Schoffelen JM, Oostenveld R, Jensen O., J. Neurosci. 28(8), 2008
PMID: 18287498
Audiovisual synchrony and temporal order judgments: effects of experimental method and stimulus type.
van Eijk RL, Kohlrausch A, Juola JF, van de Par S., Percept Psychophys 70(6), 2008
PMID: 18717383
Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.
van Kerkoerle T, Self MW, Dagnino B, Gariel-Mathis MA, Poort J, van der Togt C, Roelfsema PR., Proc. Natl. Acad. Sci. U.S.A. 111(40), 2014
PMID: 25205811

Visual speech speeds up the neural processing of auditory speech.
van Wassenhove V, Grant KW, Poeppel D., Proc. Natl. Acad. Sci. U.S.A. 102(4), 2005
PMID: 15647358
Temporal window of integration in auditory-visual speech perception.
van Wassenhove V, Grant KW, Poeppel D., Neuropsychologia 45(3), 2006
PMID: 16530232
Perceptual framing and cortical alpha rhythm.
Varela FJ, Toro A, John ER, Schwartz EL., Neuropsychologia 19(5), 1981
PMID: 7312152
Perception of intersensory synchrony: a tutorial review.
Vroomen J, Keetels M., Atten Percept Psychophys 72(4), 2010
PMID: 20436185
Recalibration of temporal order perception by exposure to audio-visual asynchrony.
Vroomen J, Keetels M, de Gelder B, Bertelson P., Brain Res Cogn Brain Res 22(1), 2004
PMID: 15561498
Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
Wutz A, Muschter E, van Koningsbruggen MG, Weisz N, Melcher D., Curr. Biol. 26(13), 2016
PMID: 27291050
Audiovisual prior entry.
Zampini M, Shore DI, Spence C., Neurosci. Lett. 381(3), 2005
PMID: 15896473

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28493808
PubMed | Europe PMC

Suchen in

Google Scholar