Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation

Shih P-Y, Chou S-J, Müller C, Halkier BA, Deeken R, Lai E-M (2018)
Molecular Plant Pathology 19(8): 1956-1970.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. A. tumefaciens is capable of transferring its T-DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col-0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and camalexin biosynthesis pathway were up-regulated while genes in aliphatic GS (aGS) biosynthesis were generally down-regulated upon Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium-mediated transformation combining Arabidopsis mutant studies, metabolite profiling, and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role in transformation efficiency on Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, accumulation of camalexin was a key factor inhibiting tumor development on Arabidopsis inflorescence stalks. In conclusion, this study revealed the differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation and provided new insights into crown gall disease control and improvement of plant transformation. This article is protected by copyright. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
Molecular Plant Pathology
Band
19
Ausgabe
8
Seite(n)
1956-1970
ISSN
PUB-ID

Zitieren

Shih P-Y, Chou S-J, Müller C, Halkier BA, Deeken R, Lai E-M. Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation. Molecular Plant Pathology. 2018;19(8):1956-1970.
Shih, P. - Y., Chou, S. - J., Müller, C., Halkier, B. A., Deeken, R., & Lai, E. - M. (2018). Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation. Molecular Plant Pathology, 19(8), 1956-1970. doi:10.1111/mpp.12672
Shih, P. - Y., Chou, S. - J., Müller, C., Halkier, B. A., Deeken, R., and Lai, E. - M. (2018). Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation. Molecular Plant Pathology 19, 1956-1970.
Shih, P.-Y., et al., 2018. Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation. Molecular Plant Pathology, 19(8), p 1956-1970.
P.-Y. Shih, et al., “Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation”, Molecular Plant Pathology, vol. 19, 2018, pp. 1956-1970.
Shih, P.-Y., Chou, S.-J., Müller, C., Halkier, B.A., Deeken, R., Lai, E.-M.: Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation. Molecular Plant Pathology. 19, 1956-1970 (2018).
Shih, Po-Yuan, Chou, Shu-Jen, Müller, Caroline, Halkier, Barbara Ann, Deeken, Rosalia, and Lai, Erh-Min. “Differential roles of glucosinolates and camalexin at different stages of agrobacterium-mediated transformation”. Molecular Plant Pathology 19.8 (2018): 1956-1970.

52 References

Daten bereitgestellt von Europe PubMed Central.

1,4-Dimethoxyglucobrassicin in Barbarea and 4-hydroxyglucobrassicin in Arabidopsis and Brassica.
Agerbirk N, Petersen BL, Olsen CE, Halkier BA, Nielsen JK., J. Agric. Food Chem. 49(3), 2001
PMID: 11312886
Phytoalexins in defense against pathogens.
Ahuja I, Kissen R, Bones AM., Trends Plant Sci. 17(2), 2011
PMID: 22209038
Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria.
Aires A, Mota VR, Saavedra MJ, Monteiro AA, Simoes M, Rosa EA, Bennett RN., J. Appl. Microbiol. 106(6), 2009
PMID: 19291239
Improved scoring of functional groups from gene expression data by decorrelating GO graph structure.
Alexa A, Rahnenfuhrer J, Lengauer T., Bioinformatics 22(13), 2006
PMID: 16606683
A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense.
Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P., Science 323(5910), 2008
PMID: 19095900
The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.
Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RC, Morandini P, Aarts MG, Bovy A., PLoS ONE 3(4), 2008
PMID: 18446225
Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction.
Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D., Plant Cell 7(9), 1995
PMID: 8589625
Altering glucosinolate profiles modulates disease resistance in plants.
Brader G, Mikkelsen MD, Halkier BA, Tapio Palva E., Plant J. 46(5), 2006
PMID: 16709192

Britton, 2008
Long-distance phloem transport of glucosinolates in Arabidopsis.
Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA., Plant Physiol. 127(1), 2001
PMID: 11553747
Glucosinolate metabolites required for an Arabidopsis innate immune response.
Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM., Science 323(5910), 2008
PMID: 19095898
Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis.
Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C., Science 331(6021), 2011
PMID: 21385714
Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC-QTOFMS using a charged surface hybrid column.
Glauser G, Schweizer F, Turlings TC, Reymond P., Phytochem Anal 23(5), 2012
PMID: 22323091
Plant responses to Agrobacterium tumefaciens and crown gall development.
Gohlke J, Deeken R., Front Plant Sci 5(), 2014
PMID: 24795740
Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects
Gonzáles-Megías, J. Anim. Ecol. 79(), 2010
Biology and biochemistry of glucosinolates.
Halkier BA, Gershenzon J., Annu Rev Plant Biol 57(), 2006
PMID: 16669764
Agrobacterium-produced and exogenous cytokinin-modulated Agrobacterium-mediated plant transformation.
Hwang HH, Wang MH, Lee YL, Tsai YL, Li YH, Yang FJ, Liao YC, Lin SK, Lai EM., Mol. Plant Pathol. 11(5), 2010
PMID: 20696005
The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens.
Hwang HH, Yang FJ, Cheng TF, Chen YC, Lee YL, Tsai YL, Lai EM., Phytopathology 103(9), 2013
PMID: 23593941
Agrobacterium-mediated plant transformation: biology and applications
Hwang, Arabidopsis Book 15(), 2017
Auxin synthesis in Agrobacterium tumefaciens and A. tumefaciens-transformed plant-tissue
Kutacek, Plant Growth Regul. 10(), 1991
Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.
Lee CW, Efetova M, Engelmann JC, Kramell R, Wasternack C, Ludwig-Muller J, Hedrich R, Deeken R., Plant Cell 21(9), 2009
PMID: 19794116
GOBU: toward an integration interface for biological objects
Lin, J. Inform. Sci. Eng. 22(), 2006
Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis.
Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P., Science 310(5751), 2005
PMID: 16293760
Controlled indole-3-acetaldoxime production through ethanol-induced expression of CYP79B2.
Mikkelsen MD, Fuller VL, Hansen BG, Nafisi M, Olsen CE, Nielsen HB, Halkier BA., Planta 229(6), 2009
PMID: 19263076
Early transcription of Agrobacterium T-DNA genes in tobacco and maize.
Narasimhulu SB, Deng XB, Sarria R, Gelvin SB., Plant Cell 8(5), 1996
PMID: 8672885
Networking by small-molecule hormones in plant immunity.
Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC., Nat. Chem. Biol. 5(5), 2009
PMID: 19377457
Secretion of trans-zeatin by Agrobacterium tumefaciens: a function determined by the nopaline Ti plasmid.
Regier DA, Morris RO., Biochem. Biophys. Res. Commun. 104(4), 1982
PMID: 7073755
Mode of action of the Arabidopsis thaliana phytoalexin camalexin and its role in Arabidopsis-pathogen interactions
Rogers, Mol. Plant-Microbe Interact. 9(), 1996

Salinas, 2006
Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor.
Sardesai N, Lee LY, Chen H, Yi H, Olbricht GR, Stirnberg A, Jeffries J, Xiong K, Doerge RW, Gelvin SB., Sci Signal 6(302), 2013
PMID: 24255177
Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection.
Shlezinger N, Minz A, Gur Y, Hatam I, Dagdas YF, Talbot NJ, Sharon A., PLoS Pathog. 7(8), 2011
PMID: 21876671
Identification of the signal molecules produced by wounded plant-cells that activate T-DNA transfer in Agrobacterium tumefaciens
Stachel, Nature 318(), 1985
The Arabidopsis YUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis.
Stepanova AN, Yun J, Robles LM, Novak O, He W, Guo H, Ljung K, Alonso JM., Plant Cell 23(11), 2011
PMID: 22108406
Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y., Plant J. 67(1), 2011
PMID: 21418358
Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis.
Sugawara S, Hishiyama S, Jikumaru Y, Hanada A, Nishimura T, Koshiba T, Zhao Y, Kamiya Y, Kasahara H., Proc. Natl. Acad. Sci. U.S.A. 106(13), 2009
PMID: 19279202
Revised determination of free and complexed myrosinase activities in plant extracts.
Travers-Martin N, Kuhlmann F, Muller C., Plant Physiol. Biochem. 46(4), 2008
PMID: 18395461
AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings.
Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM., Plant Methods 10(), 2014
PMID: 24987449
Regulation of plant glucosinolate metabolism.
Yan X, Chen S., Planta 226(6), 2007
PMID: 17899172
The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium.
Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW., Proc. Natl. Acad. Sci. U.S.A. 104(28), 2007
PMID: 17606909
Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3.
Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL., Genes Dev. 16(23), 2002
PMID: 12464638
Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation.
Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G., Cell 125(4), 2006
PMID: 16713565

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29498790
PubMed | Europe PMC

Suchen in

Google Scholar