Super-resolution optical microscopy resolves network morphology of smart colloidal microgels

Bergmann S, Wrede O, Huser T, Hellweg T (2018)

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.
Page URI


Bergmann S, Wrede O, Huser T, Hellweg T. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 2018;20(7):5074-5083.
Bergmann, S., Wrede, O., Huser, T., & Hellweg, T. (2018). Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(7), 5074-5083. doi:10.1039/c7cp07648g
Bergmann, S., Wrede, O., Huser, T., and Hellweg, T. (2018). Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20, 5074-5083.
Bergmann, S., et al., 2018. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 20(7), p 5074-5083.
S. Bergmann, et al., “Super-resolution optical microscopy resolves network morphology of smart colloidal microgels”, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 20, 2018, pp. 5074-5083.
Bergmann, S., Wrede, O., Huser, T., Hellweg, T.: Super-resolution optical microscopy resolves network morphology of smart colloidal microgels. PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 20, 5074-5083 (2018).
Bergmann, Stephan, Wrede, Oliver, Huser, Thomas, and Hellweg, Thomas. “Super-resolution optical microscopy resolves network morphology of smart colloidal microgels”. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 20.7 (2018): 5074-5083.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Numerical modelling of non-ionic microgels: an overview.
Rovigatti L, Gnan N, Tavagnacco L, Moreno AJ, Zaccarelli E., Soft Matter 15(6), 2019
PMID: 30543246
Deuteration-Induced Volume Phase Transition Temperature Shift of PNIPMAM Microgels.
Cors M, Wiehemeier L, Oberdisse J, Hellweg T., Polymers (Basel) 11(4), 2019
PMID: 30960604
Relationship between rheology and structure of interpenetrating, deforming and compressing microgels.
Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F., Nat Commun 10(1), 2019
PMID: 31164639
Nanoscopic Visualization of Cross-Linking Density in Polymer Networks with Diarylethene Photoswitches.
Siemes E, Nevskyi O, Sysoiev D, Turnhoff SK, Oppermann A, Huhn T, Richtering W, Wöll D., Angew Chem Int Ed Engl 57(38), 2018
PMID: 30070009
3D mapping of nanoscale crosslink heterogeneities in microgels.
Karanastasis AA, Zhang Y, Kenath GS, Lessard MD, Bewersdorf J, Ullal CK., Mater Horiz 5(6), 2018
PMID: 30450211
Modelling realistic microgels in an explicit solvent.
Camerin F, Gnan N, Rovigatti L, Zaccarelli E., Sci Rep 8(1), 2018
PMID: 30258102

51 References

Daten bereitgestellt von Europe PubMed Central.

Hydrogel microparticles as dynamically tunable microlenses.
Kim J, Serpe MJ, Lyon LA., J. Am. Chem. Soc. 126(31), 2004
PMID: 15291534
Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres.
Dai Y, Ma P, Cheng Z, Kang X, Zhang X, Hou Z, Li C, Yang D, Zhai X, Lin J., ACS Nano 6(4), 2012
PMID: 22435911

Schachschal, Macromolecules 43(), 2010
Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly(allylacetic acid) copolymer microgels.
Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, von Klitzing R, Wellert S, Hellweg T., Langmuir 24(12), 2008
PMID: 18489184

Fernandez-Nieves, J. Chem. Phys. 115(), 2001
Controlled release of doxorubicin loaded within magnetic thermo-responsive nanocarriers under magnetic and thermal actuation in a microfluidic channel.
Pernia Leal M, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T., ACS Nano 6(12), 2012
PMID: 23116285
Loading of PNIPAM Based Microgels with CoFe2O4 Nanoparticles and Their Magnetic Response in Bulk and at Surfaces.
Backes S, Witt MU, Roeben E, Kuhrts L, Aleed S, Schmidt AM, von Klitzing R., J Phys Chem B 119(36), 2015
PMID: 26262551
Anisotropic responsive microgels with tuneable shape and interactions.
Crassous JJ, Mihut AM, Mansson LK, Schurtenberger P., Nanoscale 7(38), 2015
PMID: 26367504

Uhlig, 2016
In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels.
Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J., ACS Nano 4(12), 2010
PMID: 21082786

Nayak, Chem. Mater. 16(), 2004
Functional Microgels and Microgel Systems.
Plamper FA, Richtering W., Acc. Chem. Res. 50(2), 2017
PMID: 28186408
Soft nanotechnology with soft nanoparticles.
Nayak S, Lyon LA., Angew. Chem. Int. Ed. Engl. 44(47), 2005
PMID: 16283684
Temperature-sensitive aqueous microgels.
Pelton R., Adv Colloid Interface Sci 85(1), 2000
PMID: 10696447
Gel architectures and their complexity.
Richtering W, Saunders BR., Soft Matter 10(21), 2014
PMID: 24705716

Mears, Langmuir 13(), 1997

Crowther, Colloids Surf., A 152(), 1999

Kratz, Polymer 42(), 2001
Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering.
Fernandez-Barbero A, Fernandez-Nieves A, Grillo I, Lopez-Cabarcos E., Phys Rev E Stat Nonlin Soft Matter Phys 66(5 Pt 1), 2002
PMID: 12513512
Static light scattering from microgel particles: model of variable dielectric permittivity.
Fernandez-Nieves A, de las Nieves FJ, Fernandez-Barbero A., J Chem Phys 120(1), 2004
PMID: 15267298
Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance.
Karg M, Lu Y, Carbo-Argibay E, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM, Hellweg T., Langmuir 25(5), 2009
PMID: 19437719

Ballauff, Prog. Polym. Sci. 32(), 2007
Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids.
Stieger M, Richtering W, Pedersen JS, Lindner P., J Chem Phys 120(13), 2004
PMID: 15267506

Fernandes, Soft Matter 6(), 2010
Swelling of micro-hydrogels with a crosslinker gradient.
Boon N, Schurtenberger P., Phys Chem Chem Phys 19(35), 2017
PMID: 28607971

Flory, J. Chem. Phys. 11(), 1943

Meyer, Macromolecules 38(), 2005

Wei, Colloids Surf., A 489(), 2016
3D Structures of Responsive Nanocompartmentalized Microgels.
Gelissen AP, Oppermann A, Caumanns T, Hebbeker P, Turnhoff SK, Tiwari R, Eisold S, Simon U, Lu Y, Mayer J, Richtering W, Walther A, Woll D., Nano Lett. 16(11), 2016
PMID: 27701865

Conley, Colloids Surf., A 499(), 2016

Shibayama, J. Chem. Phys. 97(), 1992
Highly inclined thin illumination enables clear single-molecule imaging in cells.
Tokunaga M, Imamoto N, Sakata-Sogawa K., Nat. Methods 5(2), 2008
PMID: 18176568
Total internal reflection fluorescence.
Axelrod D, Burghardt TP, Thompson NL., Annu. Rev. Biophys. Bioeng. 13(), 1984
PMID: 6378070
Fiji: an open-source platform for biological-image analysis.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A., Nat. Methods 9(7), 2012
PMID: 22743772
ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging.
Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM., Bioinformatics 30(16), 2014
PMID: 24771516

Magde, Phys. Rev. Lett. 29(), 1972

Shibayama, Macromolecules 29(), 1996

Hellweg, Colloids Surf., A 202(), 2002
Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging.
van de Linde S, Krstic I, Prisner T, Doose S, Heilemann M, Sauer M., Photochem. Photobiol. Sci. 10(4), 2010
PMID: 21152594

Zondervan, J. Phys. Chem. A 107(), 2003
Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).
Rust MJ, Bates M, Zhuang X., Nat. Methods 3(10), 2006
PMID: 16896339
Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes.
Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M., Angew. Chem. Int. Ed. Engl. 47(33), 2008
PMID: 18646237
Precise nanometer localization analysis for individual fluorescent probes.
Thompson RE, Larson DR, Webb WW., Biophys. J. 82(5), 2002
PMID: 11964263

Provencher, Comput. Phys. Commun. 27(), 1982
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 29392265
PubMed | Europe PMC

Suchen in

Google Scholar