Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity

Kayser S, Kayser C (2018)
Scientific Reports 8(1): 3742.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.11 MB
Abstract / Bemerkung
A well-known effect in multisensory perception is that congruent information received by different senses usually leads to faster and more accurate responses. Less well understood are trial-by-trial interactions, whereby the multisensory composition of stimuli experienced during previous trials shapes performance during a subsequent trial. We here exploit the analogy of multisensory paradigms with classical flanker tasks to investigate the neural correlates underlying trial-by-trial interactions of multisensory congruency. Studying an audio-visual motion task, we demonstrate that congruency benefits for accuracy and reaction times are reduced following an audio-visual incongruent compared to a congruent preceding trial. Using single trial analysis of motion-sensitive EEG components we then localize current-trial and serial interaction effects within distinct brain regions: while the multisensory congruency experienced during the current trial influences the encoding of task-relevant information in sensory-specific brain regions, the serial interaction arises from task-relevant processes within the inferior frontal lobe. These results highlight parallels between multisensory paradigms and classical flanker tasks and demonstrate a role of amodal association cortices in shaping perception based on the history of multisensory congruency.
Erscheinungsjahr
2018
Zeitschriftentitel
Scientific Reports
Band
8
Ausgabe
1
Art.-Nr.
3742
ISSN
2045-2322
Page URI
https://pub.uni-bielefeld.de/record/2918229

Zitieren

Kayser S, Kayser C. Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity. Scientific Reports. 2018;8(1): 3742.
Kayser, S., & Kayser, C. (2018). Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity. Scientific Reports, 8(1), 3742. doi:10.1038/s41598-018-22137-8
Kayser, S., and Kayser, C. (2018). Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity. Scientific Reports 8:3742.
Kayser, S., & Kayser, C., 2018. Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity. Scientific Reports, 8(1): 3742.
S. Kayser and C. Kayser, “Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity”, Scientific Reports, vol. 8, 2018, : 3742.
Kayser, S., Kayser, C.: Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity. Scientific Reports. 8, : 3742 (2018).
Kayser, Stephanie, and Kayser, Christoph. “Trial by trial dependencies in multisensory perception and their correlates in dynamic brain activity”. Scientific Reports 8.1 (2018): 3742.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:57Z
MD5 Prüfsumme
4c61847c277dfecf2db58e4c94775185

65 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0
Recalibration of temporal order perception by exposure to audio-visual asynchrony.
Vroomen J, Keetels M, de Gelder B, Bertelson P., Brain Res Cogn Brain Res 22(1), 2004
PMID: 15561498
Recalibration of perceived time across sensory modalities.
Hanson JV, Heron J, Whitaker D., Exp Brain Res 185(2), 2008
PMID: 18236035
Rapid recalibration to audiovisual asynchrony.
Van der Burg E, Alais D, Cass J., J. Neurosci. 33(37), 2013
PMID: 24027264
Computational characterization of visually induced auditory spatial adaptation.
Wozny DR, Shams L., Front Integr Neurosci 5(), 2011
PMID: 22069383
Predicting auditory space calibration from recent multisensory experience.
Mendonca C, Escher A, van de Par S, Colonius H., Exp Brain Res 233(7), 2015
PMID: 25795081
Accumulation and decay of visual capture and the ventriloquism aftereffect caused by brief audio-visual disparities.
Bosen AK, Fleming JT, Allen PD, O'Neill WE, Paige GD., Exp Brain Res 235(2), 2016
PMID: 27837258
Multisensory simultaneity recalibration: storage of the aftereffect in the absence of counterevidence.
Machulla TK, Di Luca M, Froehlich E, Ernst MO., Exp Brain Res 217(1), 2011
PMID: 22207361
A model-based comparison of three theories of audiovisual temporal recalibration.
Yarrow K, Minaei S, Arnold DH., Cogn Psychol 83(), 2015
PMID: 26545105
Opposite Effects of Recent History on Perception and Decision.
Fritsche M, Mostert P, de Lange FP., Curr. Biol. 27(4), 2017
PMID: 28162897
Hysteresis in the perception of motion direction as evidence for neural cooperativity.
Williams D, Phillips G, Sekuler R., Nature 324(6094), 1986
PMID: 3785395
Multi-timescale perceptual history resolves visual ambiguity.
Brascamp JW, Knapen TH, Kanai R, Noest AJ, van Ee R, van den Berg AV., PLoS ONE 3(1), 2008
PMID: 18231584
Conflict monitoring and cognitive control.
Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD., Psychol Rev 108(3), 2001
PMID: 11488380
Optimizing the use of information: strategic control of activation of responses.
Gratton G, Coles MG, Donchin E., J Exp Psychol Gen 121(4), 1992
PMID: 1431740
The Gratton effect remains after controlling for contingencies and stimulus repetitions.
Blais C, Stefanidi A, Brewer GA., Front Psychol 5(), 2014
PMID: 25386151
Spatial attention and audiovisual interactions in apparent motion.
Sanabria D, Soto-Faraco S, Spence C., J Exp Psychol Hum Percept Perform 33(4), 2007
PMID: 17683238
Capturing spatial attention with multisensory cues: a review.
Spence C, Santangelo V., Hear. Res. 258(1-2), 2009
PMID: 19409472
Improvement of visual contrast detection by a simultaneous sound.
Lippert M, Logothetis NK, Kayser C., Brain Res. 1173(), 2007
PMID: 17765208
0 + 1 > 1: How adding noninformative sound improves performance on a visual task.
Kim R, Peters MA, Shams L., Psychol Sci 23(1), 2011
PMID: 22127367
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Oostenveld R, Fries P, Maris E, Schoffelen JM., Comput Intell Neurosci 2011(), 2010
PMID: 21253357
Recipes for the linear analysis of EEG.
Parra LC, Spence CD, Gerson AD, Sajda P., Neuroimage 28(2), 2005
PMID: 16084117
A supramodal accumulation-to-bound signal that determines perceptual decisions in humans.
O'Connell RG, Dockree PM, Kelly SP., Nat. Neurosci. 15(12), 2012
PMID: 23103963
Nonparametric statistical testing of EEG- and MEG-data.
Maris E, Oostenveld R., J. Neurosci. Methods 164(1), 2007
PMID: 17517438
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Eklund A, Nichols TE, Knutsson H., Proc. Natl. Acad. Sci. U.S.A. 113(28), 2016
PMID: 27357684
Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study.
Pernet CR, Latinus M, Nichols TE, Rousselet GA., J. Neurosci. Methods 250(), 2014
PMID: 25128255

Y, The Annals of Statistics 29(), 2001
Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs.
Larson MJ, Clayson PE, Clawson A., Int J Psychophysiol 93(3), 2014
PMID: 24950132
The electrophysiological dynamics of interference during the Stroop task.
Hanslmayr S, Pastotter B, Bauml KH, Gruber S, Wimber M, Klimesch W., J Cogn Neurosci 20(2), 2008
PMID: 18275330
Sounds reset rhythms of visual cortex and corresponding human visual perception.
Romei V, Gross J, Thut G., Curr. Biol. 22(9), 2012
PMID: 22503499
Recalibration of audiovisual simultaneity.
Fujisaki W, Shimojo S, Kashino M, Nishida S., Nat. Neurosci. 7(7), 2004
PMID: 15195098
Event Related Potentials Index Rapid Recalibration to Audiovisual Temporal Asynchrony.
Simon DM, Noel JP, Wallace MT., Front Integr Neurosci 11(), 2017
PMID: 28381993

E, Audiovisual temporal recalibration occurs independently at two different time scales 5(), 2015
Can post-error dynamics explain sequential reaction time patterns?
Goldfarb S, Wong-Lin K, Schwemmer M, Leonard NE, Holmes P., Front Psychol 3(), 2012
PMID: 22811671
Sequential effects in two-choice reaction time tasks: decomposition and synthesis of mechanisms.
Gao J, Wong-Lin K, Holmes P, Simen P, Cohen JD., Neural Comput 21(9), 2009
PMID: 19548803
Item-specific adaptation and the conflict-monitoring hypothesis: a computational model.
Blais C, Robidoux S, Risko EF, Besner D., Psychol Rev 114(4), 2007
PMID: 17907873
Specific activation of the V5 brain area by auditory motion processing: an fMRI study.
Poirier C, Collignon O, Devolder AG, Renier L, Vanlierde A, Tranduy D, Scheiber C., Brain Res Cogn Brain Res 25(3), 2005
PMID: 16298112
Tactile and visual motion direction processing in hMT+/V5.
van Kemenade BM, Seymour K, Wacker E, Spitzer B, Blankenburg F, Sterzer P., Neuroimage 84(), 2013
PMID: 24036354
Decoding sound and imagery content in early visual cortex.
Vetter P, Smith FW, Muckli L., Curr. Biol. 24(11), 2014
PMID: 24856208
The classic P300 encodes a build-to-threshold decision variable.
Twomey DM, Murphy PR, Kelly SP, O'Connell RG., Eur. J. Neurosci. 42(1), 2015
PMID: 25925534
Conflict monitoring and anterior cingulate cortex: an update.
Botvinick MM, Cohen JD, Carter CS., Trends Cogn. Sci. (Regul. Ed.) 8(12), 2004
PMID: 15556023
Anterior cingulate and prefrontal cortex: who's in control?
Cohen JD, Botvinick M, Carter CS., Nat. Neurosci. 3(5), 2000
PMID: 10769376
Conflict monitoring versus selection-for-action in anterior cingulate cortex.
Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD., Nature 402(6758), 1999
PMID: 10647008
Neural correlates of motor-sensory temporal recalibration.
Stekelenburg JJ, Sugano Y, Vroomen J., Brain Res. 1397(), 2011
PMID: 21600564
The multifaceted interplay between attention and multisensory integration.
Talsma D, Senkowski D, Soto-Faraco S, Woldorff MG., Trends Cogn. Sci. (Regul. Ed.) 14(9), 2010
PMID: 20675182
Crossmodal attention.
Driver J, Spence C., Curr. Opin. Neurobiol. 8(2), 1998
PMID: 9635209
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M., Neuroimage 15(1), 2002
PMID: 11771995

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29487374
PubMed | Europe PMC

Suchen in

Google Scholar