Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II)

Saßenroth D, Meyer A, Salewsky B, Kroh M, Norman K, Steinhagen-Thiessen E, Demuth I (2015)
PLOS ONE 10(12): e0142131.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Physical activity and sports have repeatedly been reported to be associated with telomere length. We studied the association of different types of sports across different stages of life on relative leukocyte telomere length (rLTL) in advanced age. 815 participants (397 men) from the Berlin Aging Study II aged over 61 years were included in the analysis. rLTL was measured by real time PCR and physical activity was determined retrospectively by questionnaire, assessing type and duration of sports in the past as well as currently. Five separate multiple linear regression models adjusted for various control variables were performed. 67.3% of participants exercised currently, whereas 19.4% performed sports only between the age of 20 and 30. rLTL was higher in subjects who stated to exercise currently (N = 456), and in subjects who engaged in endurance (N = 138) or intensive activity sports (N = 32). Current physical activity was positively associated with rLTL in the risk factor adjusted regression model (beta = 0.26, p < 0.001) and practicing sports for a minimum of 10 years preceding the assessment had a significant effect on rLTL (beta = 0.39, p = 0.011). The highest impact was seen for intensive activity sports (beta = 0.79, p < 0.001) and physical activity since at least 42 years (beta = 0.47, p = 0.001). However, physical activity only between 20 and 30 years of age did not affect rLTL in old age when compared to no sports at all (beta = -0.16, p = 0.21). Physical activity is clearly associated with longer rLTL. The effect is seen with longer periods of physical activity (at least 10 years), with intensive sports activities having the greatest impact on rLTL. Our data suggest that regular physical activity for at least 10 years is necessary to achieve a sustained effect on rLTL.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
10
Ausgabe
12
Art.-Nr.
e0142131
ISSN
PUB-ID

Zitieren

Saßenroth D, Meyer A, Salewsky B, et al. Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). PLOS ONE. 2015;10(12): e0142131.
Saßenroth, D., Meyer, A., Salewsky, B., Kroh, M., Norman, K., Steinhagen-Thiessen, E., & Demuth, I. (2015). Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). PLOS ONE, 10(12), e0142131. doi:10.1371/journal.pone.0142131
Saßenroth, D., Meyer, A., Salewsky, B., Kroh, M., Norman, K., Steinhagen-Thiessen, E., and Demuth, I. (2015). Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). PLOS ONE 10:e0142131.
Saßenroth, D., et al., 2015. Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). PLOS ONE, 10(12): e0142131.
D. Saßenroth, et al., “Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II)”, PLOS ONE, vol. 10, 2015, : e0142131.
Saßenroth, D., Meyer, A., Salewsky, B., Kroh, M., Norman, K., Steinhagen-Thiessen, E., Demuth, I.: Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II). PLOS ONE. 10, : e0142131 (2015).
Saßenroth, Denise, Meyer, Antje, Salewsky, Bastian, Kroh, Martin, Norman, Kristina, Steinhagen-Thiessen, Elisabeth, and Demuth, Ilja. “Sports and Exercise at Different Ages and Leukocyte Telomere Length in Later Life – Data from the Berlin Aging Study II (BASE-II)”. PLOS ONE 10.12 (2015): e0142131.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Epigenetic Clock and Relative Telomere Length Represent Largely Different Aspects of Aging in the Berlin Aging Study II (BASE-II).
Vetter VM, Meyer A, Karbasiyan M, Steinhagen-Thiessen E, Hopfenmüller W, Demuth I., J Gerontol A Biol Sci Med Sci 74(1), 2019
PMID: 30137208
Physical activity and telomere length: Impact of aging and potential mechanisms of action.
Arsenis NC, You T, Ogawa EF, Tinsley GM, Zuo L., Oncotarget 8(27), 2017
PMID: 28410238
Telomeres, Aging and Exercise: Guilty by Association?
Chilton W, O'Brien B, Charchar F., Int J Mol Sci 18(12), 2017
PMID: 29186077

35 References

Daten bereitgestellt von Europe PubMed Central.

Shelterin complex and associated factors at human telomeres.
Diotti R, Loayza D., Nucleus 2(2), 2011
PMID: 21738835
A systematic review of leukocyte telomere length and age in adults.
Muezzinler A, Zaineddin AK, Brenner H., Ageing Res. Rev. 12(2), 2013
PMID: 23333817
Multiple measures of adiposity are associated with mean leukocyte telomere length in the northern Finland birth cohort 1966.
Buxton JL, Das S, Rodriguez A, Kaakinen M, Couto Alves A, Sebert S, Millwood IY, Laitinen J, O'Reilly PF, Jarvelin MR, Blakemore AI., PLoS ONE 9(6), 2014
PMID: 24919187
Telomere length loss due to smoking and metabolic traits.
Huzen J, Wong LS, van Veldhuisen DJ, Samani NJ, Zwinderman AH, Codd V, Cawthon RM, Benus GF, van der Horst IC, Navis G, Bakker SJ, Gansevoort RT, de Jong PE, Hillege HL, van Gilst WH, de Boer RA, van der Harst P., J. Intern. Med. 275(2), 2013
PMID: 24118582
Body mass index and leukocyte telomere length in adults: a systematic review and meta-analysis.
Muezzinler A, Zaineddin AK, Brenner H., Obes Rev 15(3), 2013
PMID: 24165286
Short telomere length, lung function and chronic obstructive pulmonary disease in 46,396 individuals.
Rode L, Bojesen SE, Weischer M, Vestbo J, Nordestgaard BG., Thorax 68(5), 2012
PMID: 23268483
Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations.
Shen Q, Zhao X, Yu L, Zhang Z, Zhou D, Kan M, Zhang D, Cao L, Xing Q, Yang Y, Xu H, He L, Liu Y., J. Clin. Endocrinol. Metab. 97(4), 2012
PMID: 22319045
Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study.
Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M., Transl Res 155(4), 2009
PMID: 20303464
Telomeres and human health.
Bojesen SE., J. Intern. Med. 274(5), 2013
PMID: 24127938
Inverse association between adiposity and telomere length: The Fels Longitudinal Study.
Lee M, Martin H, Firpo MA, Demerath EW., Am. J. Hum. Biol. 23(1), 2011
PMID: 21080476
Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study.
Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkala KH, Fyhrquist F., Eur. J. Epidemiol. 27(10), 2012
PMID: 22875407
The association between physical activity in leisure time and leukocyte telomere length.
Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A., Arch. Intern. Med. 168(2), 2008
PMID: 18227361
Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999-2002.
Needham BL, Adler N, Gregorich S, Rehkopf D, Lin J, Blackburn EH, Epel ES., Soc Sci Med 85(), 2013
PMID: 23540359
Healthy lifestyle and leukocyte telomere length in U.S. women.
Sun Q, Shi L, Prescott J, Chiuve SE, Hu FB, De Vivo I, Stampfer MJ, Franks PW, Manson JE, Rexrode KM., PLoS ONE 7(5), 2012
PMID: 22675460
Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis.
Willeit P, Raschenberger J, Heydon EE, Tsimikas S, Haun M, Mayr A, Weger S, Witztum JL, Butterworth AS, Willeit J, Kronenberg F, Kiechl S., PLoS ONE 9(11), 2014
PMID: 25390655
Relative Leukocyte Telomere Length, Hematological Parameters and Anemia—Data from the Berlin Aging Study II (BASE-II)
AUTHOR UNKNOWN, 2015
Gender and telomere length: systematic review and meta-analysis.
Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, Bekaert S, Bischoff C, Brooks-Wilson A, Chen W, Cooper C, Christensen K, De Meyer T, Deary I, Der G, Diez Roux A, Fitzpatrick A, Hajat A, Halaschek-Wiener J, Harris S, Hunt SC, Jagger C, Jeon HS, Kaplan R, Kimura M, Lansdorp P, Li C, Maeda T, Mangino M, Nawrot TS, Nilsson P, Nordfjall K, Paolisso G, Ren F, Riabowol K, Robertson T, Roos G, Staessen JA, Spector T, Tang N, Unryn B, van der Harst P, Woo J, Xing C, Yadegarfar ME, Park JY, Young N, Kuh D, von Zglinicki T, Ben-Shlomo Y; Halcyon study team., Exp. Gerontol. 51(), 2013
PMID: 24365661
Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors.
Denham J, Nelson CP, O'Brien BJ, Nankervis SA, Denniff M, Harvey JT, Marques FZ, Codd V, Zukowska-Szczechowska E, Samani NJ, Tomaszewski M, Charchar FJ., PLoS ONE 8(7), 2013
PMID: 23936000
Chronic and acute effects of endurance training on telomere length.
Borghini A, Giardini G, Tonacci A, Mastorci F, Mercuri A, Mrakic-Sposta S, Sposta SM, Moretti S, Andreassi MG, Pratali L., Mutagenesis 30(5), 2015
PMID: 26001753
Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study.
Osthus IB, Sgura A, Berardinelli F, Alsnes IV, Bronstad E, Rehn T, Stobakk PK, Hatle H, Wisloff U, Nauman J., PLoS ONE 7(12), 2012
PMID: 23300766
Skeletal muscle telomere length in healthy, experienced, endurance runners.
Rae DE, Vignaud A, Butler-Browne GS, Thornell LE, Sinclair-Smith C, Derman EW, Lambert MI, Collins M., Eur. J. Appl. Physiol. 109(2), 2010
PMID: 20101406
Telomere length and cardiorespiratory fitness in marathon runners.
Mathur S, Ardestani A, Parker B, Cappizzi J, Polk D, Thompson PD., J. Investig. Med. 61(3), 2013
PMID: 23360839
Physical activity in midlife and telomere length measured in old age.
Savela S, Saijonmaa O, Strandberg TE, Koistinen P, Strandberg AY, Tilvis RS, Pitkala KH, Miettinen TA, Fyhrquist F., Exp. Gerontol. 48(1), 2012
PMID: 22386580
Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study.
Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, Marlin R, Frenda SJ, Magbanua MJM, Daubenmier J, Estay I, Hills NK, Chainani-Wu N, Carroll PR, Blackburn EH., Lancet Oncol. 14(11), 2013
PMID: 24051140
Cohort profile: The Berlin Aging Study II (BASE-II).
Bertram L, Bockenhoff A, Demuth I, Duzel S, Eckardt R, Li SC, Lindenberger U, Pawelec G, Siedler T, Wagner GG, Steinhagen-Thiessen E., Int J Epidemiol 43(3), 2013
PMID: 23505255

AUTHOR UNKNOWN, 0
Telomere measurement by quantitative PCR.
Cawthon RM., Nucleic Acids Res. 30(10), 2002
PMID: 12000852

AUTHOR UNKNOWN, 0
Secular changes in late-life cognition and well-being: Towards a long bright future with a short brisk ending?
Gerstorf D, Hulur G, Drewelies J, Eibich P, Duezel S, Demuth I, Ghisletta P, Steinhagen-Thiessen E, Wagner GG, Lindenberger U., Psychol Aging 30(2), 2015
PMID: 25799003
A new method of classifying prognostic comorbidity in longitudinal studies: development and validation.
Charlson ME, Pompei P, Ales KL, MacKenzie CR., J Chronic Dis 40(5), 1987
PMID: 3558716

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26630493
PubMed | Europe PMC

Suchen in

Google Scholar