Direct Growth of Patterned Graphene

Weber N-E, Wundrack S, Stosch R, Turchanin A (2016)
SMALL 12(11): 1440-1445.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Weber, Nils-Eike; Wundrack, Stefan; Stosch, Rainer; Turchanin, Andrey
Erscheinungsjahr
2016
Zeitschriftentitel
SMALL
Band
12
Ausgabe
11
Seite(n)
1440-1445
ISSN
1613-6810
eISSN
1613-6829
Page URI
https://pub.uni-bielefeld.de/record/2917146

Zitieren

Weber N-E, Wundrack S, Stosch R, Turchanin A. Direct Growth of Patterned Graphene. SMALL. 2016;12(11):1440-1445.
Weber, N. - E., Wundrack, S., Stosch, R., & Turchanin, A. (2016). Direct Growth of Patterned Graphene. SMALL, 12(11), 1440-1445. doi:10.1002/smll.201502931
Weber, Nils-Eike, Wundrack, Stefan, Stosch, Rainer, and Turchanin, Andrey. 2016. “Direct Growth of Patterned Graphene”. SMALL 12 (11): 1440-1445.
Weber, N. - E., Wundrack, S., Stosch, R., and Turchanin, A. (2016). Direct Growth of Patterned Graphene. SMALL 12, 1440-1445.
Weber, N.-E., et al., 2016. Direct Growth of Patterned Graphene. SMALL, 12(11), p 1440-1445.
N.-E. Weber, et al., “Direct Growth of Patterned Graphene”, SMALL, vol. 12, 2016, pp. 1440-1445.
Weber, N.-E., Wundrack, S., Stosch, R., Turchanin, A.: Direct Growth of Patterned Graphene. SMALL. 12, 1440-1445 (2016).
Weber, Nils-Eike, Wundrack, Stefan, Stosch, Rainer, and Turchanin, Andrey. “Direct Growth of Patterned Graphene”. SMALL 12.11 (2016): 1440-1445.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Realization of continuous Zachariasen carbon monolayer.
Joo WJ, Lee JH, Jang Y, Kang SG, Kwon YN, Chung J, Lee S, Kim C, Kim TH, Yang CW, Kim UJ, Choi BL, Whang D, Hwang SW., Sci Adv 3(2), 2017
PMID: 28246635
Patterning Graphene Film by Magnetic-assisted UV Ozonation.
Wu Y, Tao H, Su S, Yue H, Li H, Zhang Z, Ni Z, Chen X., Sci Rep 7(), 2017
PMID: 28422180
Carbon Nanomembranes.
Turchanin A, Gölzhäuser A., Adv Mater 28(29), 2016
PMID: 27281234
Lithography-free plasma-induced patterned growth of MoS2 and its heterojunction with graphene.
Chen X, Park YJ, Das T, Jang H, Lee JB, Ahn JH., Nanoscale 8(33), 2016
PMID: 27432242
Templating for hierarchical structure control in carbon materials.
Schrettl S, Schulte B, Frauenrath H., Nanoscale 8(45), 2016
PMID: 27827511

32 References

Daten bereitgestellt von Europe PubMed Central.

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems.
Ferrari AC, Bonaccorso F, Fal'ko V, Novoselov KS, Roche S, Boggild P, Borini S, Koppens FH, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhanen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn JH, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SR, Tannock Q, Lofwander T, Kinaret J., Nanoscale 7(11), 2015
PMID: 25707682
Graphene transistors.
Schwierz F., Nat Nanotechnol 5(7), 2010
PMID: 20512128

Poot, Phys. Rep. 511(), 2012
Tunable infrared plasmonic devices using graphene/insulator stacks.
Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F., Nat Nanotechnol 7(5), 2012
PMID: 22522668
Complete optical absorption in periodically patterned graphene.
Thongrattanasiri S, Koppens FH, Garcia de Abajo FJ., Phys. Rev. Lett. 108(4), 2012
PMID: 22400887
Active tunable absorption enhancement with graphene nanodisk arrays.
Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, de Abajo FJ, Nordlander P, Zhu X, Halas NJ., Nano Lett. 14(1), 2013
PMID: 24320874
Chaotic Dirac billiard in graphene quantum dots.
Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK., Science 320(5874), 2008
PMID: 18420930
Energy band-gap engineering of graphene nanoribbons.
Han MY, Ozyilmaz B, Zhang Y, Kim P., Phys. Rev. Lett. 98(20), 2007
PMID: 17677729
Electric field effect in atomically thin carbon films.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA., Science 306(5696), 2004
PMID: 15499015
Controllable synthesis of graphene and its applications.
Wei D, Liu Y., Adv. Mater. Weinheim 22(30), 2010
PMID: 20574948
Making patterns on graphene.
Zhou Y, Loh KP., Adv. Mater. Weinheim 22(32), 2010
PMID: 20533420
Side-gated transport in focused-ion-beam-fabricated multilayered graphene nanoribbons.
Dayen JF, Mahmood A, Golubev DS, Roch-Jeune I, Salles P, Dujardin E., Small 4(6), 2008
PMID: 18457332
Etching of graphene devices with a helium ion beam.
Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BW, Jarillo-Herrero P, Marcus CM., ACS Nano 3(9), 2009
PMID: 19769403
Toward all-carbon electronics: fabrication of graphene-based flexible electronic circuits and memory cards using maskless laser direct writing.
Liang J, Chen Y, Xu Y, Liu Z, Zhang L, Zhao X, Zhang X, Tian J, Huang Y, Ma Y, Li F., ACS Appl Mater Interfaces 2(11), 2010
PMID: 21058687

Yu, J. Phys. Chem. Lett. 2(), 2011

Hurch, Carbon 7(), 2014

Park, Appl. Phys. Lett. 98(), 2011

Wei, Carbon 53(), 2013

Chen, Chem. Phys. 430(), 2014
Direct writing of graphene patterns on insulating substrates under ambient conditions.
Xiong W, Zhou YS, Hou WJ, Jiang LJ, Gao Y, Fan LS, Jiang L, Silvain JF, Lu YF., Sci Rep 4(), 2014
PMID: 24809639
Atomically precise bottom-up fabrication of graphene nanoribbons.
Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Mullen K, Fasel R., Nature 466(7305), 2010
PMID: 20651687

Turchanin, Appl. Phys. Lett. 90(), 2007
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375
Functional single-layer graphene sheets from aromatic monolayers.
Matei DG, Weber NE, Kurasch S, Wundrack S, Woszczyna M, Grothe M, Weimann T, Ahlers F, Stosch R, Kaiser U, Turchanin A., Adv. Mater. Weinheim 25(30), 2013
PMID: 23716462
Raman spectroscopy as a versatile tool for studying the properties of graphene.
Ferrari AC, Basko DM., Nat Nanotechnol 8(4), 2013
PMID: 23552117
Quantifying defects in graphene via Raman spectroscopy at different excitation energies.
Cancado LG, Jorio A, Ferreira EH, Stavale F, Achete CA, Capaz RB, Moutinho MV, Lombardo A, Kulmala TS, Ferrari AC., Nano Lett. 11(8), 2011
PMID: 21696186
Conversion of self-assembled monolayers into nanocrystalline graphene: structure and electric transport.
Turchanin A, Weber D, Buenfeld M, Kisielowski C, Fistul MV, Efetov KB, Weimann T, Stosch R, Mayer J, Golzhauser A., ACS Nano 5(5), 2011
PMID: 21491948
Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst.
Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP., ACS Nano 5(12), 2011
PMID: 22034835
Clean-lifting transfer of large-area residual-free graphene films.
Wang DY, Huang IS, Ho PH, Li SS, Yeh YC, Wang DW, Chen WL, Lee YY, Chang YM, Chen CC, Liang CT, Chen CW., Adv. Mater. Weinheim 25(32), 2013
PMID: 23813552
Oxidation resistance of graphene-coated Cu and Cu/Ni alloy.
Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS., ACS Nano 5(2), 2011
PMID: 21275384
Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography.
Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Golzhauser A., Small 3(12), 2007
PMID: 17960749

Bojko, J. Vac. Sci. Technol., A 18(), 2000
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26765943
PubMed | Europe PMC

Suchen in

Google Scholar