Typical fast thermalization processes in closed many-body systems

Reimann P (2016)
NATURE COMMUNICATIONS 7(1): 10821.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The lack of knowledge about the detailed many-particle motion on the microscopic scale is a key issue in any theoretical description of a macroscopic experiment. For systems at or close to thermal equilibrium, statistical mechanics provides a very successful general framework to cope with this problem. However, far from equilibrium, only very few quantitative and comparably universal results are known. Here a quantum mechanical prediction of this type is derived and verified against various experimental and numerical data from the literature. It quantitatively describes the entire temporal relaxation towards thermal equilibrium for a large class (in a mathematically precisely defined sense) of closed many-body systems, whose initial state may be arbitrarily far from equilibrium.
Erscheinungsjahr
2016
Zeitschriftentitel
NATURE COMMUNICATIONS
Band
7
Ausgabe
1
Art.-Nr.
10821
ISSN
2041-1723
Page URI
https://pub.uni-bielefeld.de/record/2917074

Zitieren

Reimann P. Typical fast thermalization processes in closed many-body systems. NATURE COMMUNICATIONS. 2016;7(1): 10821.
Reimann, P. (2016). Typical fast thermalization processes in closed many-body systems. NATURE COMMUNICATIONS, 7(1), 10821. doi:10.1038/ncomms10821
Reimann, P. (2016). Typical fast thermalization processes in closed many-body systems. NATURE COMMUNICATIONS 7:10821.
Reimann, P., 2016. Typical fast thermalization processes in closed many-body systems. NATURE COMMUNICATIONS, 7(1): 10821.
P. Reimann, “Typical fast thermalization processes in closed many-body systems”, NATURE COMMUNICATIONS, vol. 7, 2016, : 10821.
Reimann, P.: Typical fast thermalization processes in closed many-body systems. NATURE COMMUNICATIONS. 7, : 10821 (2016).
Reimann, Peter. “Typical fast thermalization processes in closed many-body systems”. NATURE COMMUNICATIONS 7.1 (2016): 10821.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Typical equilibrium state of an embedded quantum system.
Ithier G, Ascroft S, Benaych-Georges F., Phys Rev E 96(6-1), 2017
PMID: 29347322

67 References

Daten bereitgestellt von Europe PubMed Central.

From quantum dynamics to the canonical distribution: general picture and rigorous example
AUTHOR UNKNOWN, 1998
Entanglement and the foundations of statistical mechanics
AUTHOR UNKNOWN, 2006
Canonical typicality.
Goldstein S, Lebowitz JL, Tumulka R, Zanghi N., Phys. Rev. Lett. 96(5), 2006
PMID: 16486907
Thermalization and its mechanism for generic isolated quantum systems.
Rigol M, Dunjko V, Olshanii M., Nature 452(7189), 2008
PMID: 18421349

AUTHOR UNKNOWN, 2009
Quantum many-body systems out of equilibrium
AUTHOR UNKNOWN, 2015

AUTHOR UNKNOWN, 1993
Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik
AUTHOR UNKNOWN, 1929
Long-time behavior of macroscopic quantum systems: commentary accompanying the english translation of John von Neumann's 1929 article on the quantum ergodic theorem
AUTHOR UNKNOWN, 2010
Approach to thermal equilibrium of macroscopic quantum systems
AUTHOR UNKNOWN, 2010
Normal typicality and von Neumann's quantum ergodic theorem
AUTHOR UNKNOWN, 2010
Generalization of von Neumann's Approach to Thermalization.
Reimann P., Phys. Rev. Lett. 115(1), 2015
PMID: 26182084

AUTHOR UNKNOWN, 2005
Concentration of measure for quantum states with a fixed expectation value
AUTHOR UNKNOWN, 2011
On the basis of quantum statistical mechanics
AUTHOR UNKNOWN, 2007
Typicality for generalized microcanonical ensembles [corrected].
Reimann P., Phys. Rev. Lett. 99(16), 2007
PMID: 17995226
Dynamical typicality of quantum expectation values.
Bartsch C, Gemmer J., Phys. Rev. Lett. 102(11), 2009
PMID: 19392176
Thermal pure quantum states at finite temperature.
Sugiura S, Shimizu A., Phys. Rev. Lett. 108(24), 2012
PMID: 23004239
Quantum statistical mechanics in a closed system.
Deutsch JM., Phys. Rev., A 43(4), 1991
PMID: 9905246
Chaos and quantum thermalization
AUTHOR UNKNOWN, 1994
Thermalization of interacting fermions and delocalization in Fock space
AUTHOR UNKNOWN, 2012
Alternatives to eigenstate thermalization.
Rigol M, Srednicki M., Phys. Rev. Lett. 108(11), 2012
PMID: 22540449
Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas
AUTHOR UNKNOWN, 2013
Finite-size scaling of eigenstate thermalization
AUTHOR UNKNOWN, 2014
Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems.
Steinigeweg R, Khodja A, Niemeyer H, Gogolin C, Gemmer J., Phys. Rev. Lett. 112(13), 2014
PMID: 24745395
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
Goldstein S, Huse DA, Lebowitz JL, Tumulka R., Phys. Rev. Lett. 115(10), 2015
PMID: 26382669
Exploring local quantum many-body relaxation by atoms in optical superlattices.
Cramer M, Flesch A, McCulloch IP, Schollwock U, Eisert J., Phys. Rev. Lett. 101(6), 2008
PMID: 18764451
Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas
AUTHOR UNKNOWN, 2012
Relaxation and prethermalization in an isolated quantum system.
Gring M, Kuhnert M, Langen T, Kitagawa T, Rauer B, Schreitl M, Mazets I, Smith DA, Demler E, Schmiedmayer J., Science 337(6100), 2012
PMID: 22956685
Relaxation dynamics of a Fermi gas in an optical superlattice.
Pertot D, Sheikhan A, Cocchi E, Miller LA, Bohn JE, Koschorreck M, Kohl M, Kollath C., Phys. Rev. Lett. 113(17), 2014
PMID: 25379905
Breakdown of thermalization in finite one-dimensional systems.
Rigol M., Phys. Rev. Lett. 103(10), 2009
PMID: 19792288
Quantum quenches and thermalization in one-dimensional fermionic systems
AUTHOR UNKNOWN, 2009
Onset of quantum chaos in one-dimensional bosonic and fermionic systems and its relation to thermalization
AUTHOR UNKNOWN, 2010
Many-body localization phase transitions
AUTHOR UNKNOWN, 2010
Effect of rare fluctuations on the thermalization of isolated quantum systems.
Biroli G, Kollath C, Lauchli AM., Phys. Rev. Lett. 105(25), 2010
PMID: 21231563
Absence of thermalization in nonintegrable systems.
Gogolin C, Muller MP, Eisert J., Phys. Rev. Lett. 106(4), 2011
PMID: 21405308
Strong and weak thermalization of infinite nonintegrable quantum systems.
Banuls MC, Cirac JI, Hastings MB., Phys. Rev. Lett. 106(5), 2011
PMID: 21405381
Exact relaxation in a class of nonequilibrium quantum lattice systems.
Cramer M, Dawson CM, Eisert J, Osborne TJ., Phys. Rev. Lett. 100(3), 2008
PMID: 18232957
Quantum mechanical evolution towards equilibrium
AUTHOR UNKNOWN, 2009
Canonical thermalization
AUTHOR UNKNOWN, 2010
Equilibration of quantum systems and subsystems
AUTHOR UNKNOWN, 2011
Equilibration of macroscopic quantum systems
AUTHOR UNKNOWN, 2012
Equilibration of isolated macroscopic quantum systems under experimentally realistic conditions
AUTHOR UNKNOWN, 2012
Quantum equilibration in finite time
AUTHOR UNKNOWN, 2012
Thermalization under randomized local Hamiltonians
AUTHOR UNKNOWN, 2012
Time scales in the approach to equilibrium of macroscopic quantum systems.
Goldstein S, Hara T, Tasaki H., Phys. Rev. Lett. 111(14), 2013
PMID: 24138227
Generic evaluation of relaxation time for quantum many body systems: analysis of system size dependence
AUTHOR UNKNOWN, 2013
Quantum systems equilibrate rapidly for most observables
AUTHOR UNKNOWN, 2014
Extremely quick thermalization in a macroscopic quantum system for a typical nonequilibrium subspace
AUTHOR UNKNOWN, 2015

AUTHOR UNKNOWN, 2014
Non-Markovian behavior of small and large complex quantum systems.
Znidaric M, Pineda C, Garcia-Mata I., Phys. Rev. Lett. 107(8), 2011
PMID: 21929150
General relaxation time of the fidelity for isolated quantum thermodynamic systems
AUTHOR UNKNOWN, 2014
Prethermalization.
Berges J, Borsanyi S, Wetterich C., Phys. Rev. Lett. 93(14), 2004
PMID: 15524783
Interaction quench in the Hubbard model.
Moeckel M, Kehrein S., Phys. Rev. Lett. 100(17), 2008
PMID: 18518309
Magneto-optics in the ultrafast regime: thermalization of spin populations in ferromagnetic films.
Guidoni L, Beaurepaire E, Bigot JY., Phys. Rev. Lett. 89(1), 2002
PMID: 12097069
Tracking Primary Thermalization Events in Graphene with Photoemission at Extreme Time Scales.
Gierz I, Calegari F, Aeschlimann S, Chavez Cervantes M, Cacho C, Chapman RT, Springate E, Link S, Starke U, Ast CR, Cavalleri A., Phys. Rev. Lett. 115(8), 2015
PMID: 26340199
Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth
AUTHOR UNKNOWN, 2013
Photon-assisted tunneling versus tunneling of excited electrons in metal-insulator-metal junctions
AUTHOR UNKNOWN, 2004
Equilibration in closed quantum systems: Application to spin qubits
AUTHOR UNKNOWN, 2015
Random-matrix physics: spectrum and strength fluctuations
AUTHOR UNKNOWN, 1981
Integration with respect to the Haar measure on unitary, orthogonal and symplectic group
AUTHOR UNKNOWN, 2006
Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems
AUTHOR UNKNOWN, 1996
An exactly solvable model for the integrability-chaos transition in rough quantum billiards.
Olshanii M, Jacobs K, Rigol M, Dunjko V, Kennard H, Yurovsky VA., Nat Commun 3(), 2012
PMID: 22273679
Ultrafast spin dynamics in ferromagnetic nickel.
Beaurepaire E, Merle J, Daunois A, Bigot J., Phys. Rev. Lett. 76(22), 1996
PMID: 10061239
Coherent phonon coupling to individual Bloch states in photoexcited bismuth.
Papalazarou E, Faure J, Mauchain J, Marsi M, Taleb-Ibrahimi A, Reshetnyak I, van Roekeghem A, Timrov I, Vast N, Arnaud B, Perfetti L., Phys. Rev. Lett. 108(25), 2012
PMID: 23004637
Laser-driven electron transfer through metal-insulator-metal contacts: Time-dependent configuration interaction singles calculations for a jellium model
AUTHOR UNKNOWN, 2003

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 26926224
PubMed | Europe PMC

Suchen in

Google Scholar