Relational Neural Gas

Paaßen B (2018)
Bielefeld University.

Datenpublikation
 
Download
OA 97.83 KB
OA rng-1.0.0.zip 125.53 KB
Abstract / Bemerkung
This is a Java 7, fully MATLAB (R) compatible implementation of _Relational neural gas_. Relational neural gas is a clustering algorithm for distance data, meaning that you put in a matrix of pairwise distances D as well as a number of clusters K and you receive a distribution of your data points into K distinct clusters. It has first been proposed by [Hammer and Hasenfuss (2007)](https://doi.org/10.1007/978-3-540-74565-5_16) and is an extension of the _neural gas_ algorithm by [Martinetz and Schulten (1991)](https://www.ks.uiuc.edu/Publications/Papers/PDF/MART91B/MART91B.pdf). The basic idea of neural gas is to represent each cluster k in terms of a prototype wk which is responsible for all data points for which this prototype is the closest prototype. This prototype-based representation has two main advantages compared to other clustering methods: 1. It permits to extend the clustering to new data points by assigning new data points to their closest prototype (out-of-sample extension). 2. It permits to inspect the data set in terms of representative data points (i.e. the prototypes).
Stichworte
clustering; relational clustering; unsupervised learning
Erscheinungsjahr
2018
Page URI
https://pub.uni-bielefeld.de/record/2916980

Zitieren

Paaßen B. Relational Neural Gas. Bielefeld University; 2018.
Paaßen, B. (2018). Relational Neural Gas. Bielefeld University. doi:10.4119/unibi/2916980
Paaßen, B. (2018). Relational Neural Gas. Bielefeld University.
Paaßen, B., 2018. Relational Neural Gas, Bielefeld University.
B. Paaßen, Relational Neural Gas, Bielefeld University, 2018.
Paaßen, B.: Relational Neural Gas. Bielefeld University (2018).
Paaßen, Benjamin. Relational Neural Gas. Bielefeld University, 2018.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:53:14Z
MD5 Prüfsumme
6223eedc4768b6710021f86ac851e93a
Name
125.53 KB
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:53:14Z
MD5 Prüfsumme
6223eedc4768b6710021f86ac851e93a

Externes Material:
Wissenschaftliche Version
Beschreibung
The original research paper by Hammer and Hasenfuss describing Relational Neural Gas.
Software:
Beschreibung
Publically available GitLab page including the source files for this distribution.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar