Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases

Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H (2018)
ChemBioChem 19(8): 768-779.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Betke, TobiasUniBi; Higuchi, Jun; Rommelmann, PhilippUniBi; Oike, KeikoUniBi; Nomura, Taiji; Kato, Yasuo; Asano, Yasuhisa; Gröger, HaraldUniBi
Abstract / Bemerkung
Nitriles belong to the product classes, which are mostly needed and produced by the chemical industry, playing a major role in various industry segments ranging from high-volume low-price sectors such as polymers to low-volume high-price sectors such as the chiral pharma drugs. A common industrial technology for nitrile production is ammonoxidation as a gas phase reaction at high temperature. A further popular approach are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed by means of so-called aldoxime dehydratases, which are capable to convert an aldoxime in one step via dehydration into nitriles. Since the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria to be applied as a "synthetic platform technology". Thus, the scope of this review is to give an overview about the current state of the substrate scope of this enzymatic method for synthesizing nitriles by means of aldoxime dehydratases. Even being a recently emerged enzyme class, a range of substrates have already been studied so far, comprising non-chiral and chiral aldoximes. It turned out that this enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes as well as arylaliphatic aldoximes. Furthermore, aldoximes bearing a stereogenic center are recognized as well and in particular for 2-arylpropylaldoximes high enantioselectivities are found. It is further noteworthy that the enantiopreference turned out to depend on the (E)- and (Z)-isomer. Thus, opposite enantiomers are accessible although starting from the same racemic aldehyde and the same enzyme. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stichworte
Enzyme catalysis; aldoxime dehydratases; biocatalysis; nitriles; stereochemistry
Erscheinungsjahr
2018
Zeitschriftentitel
ChemBioChem
Band
19
Ausgabe
8
Seite(n)
768-779
ISSN
1439-4227
Page URI
https://pub.uni-bielefeld.de/record/2916923

Zitieren

Betke T, Higuchi J, Rommelmann P, et al. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. ChemBioChem. 2018;19(8):768-779.
Betke, T., Higuchi, J., Rommelmann, P., Oike, K., Nomura, T., Kato, Y., Asano, Y., et al. (2018). Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. ChemBioChem, 19(8), 768-779. doi:10.1002/cbic.201700571
Betke, Tobias, Higuchi, Jun, Rommelmann, Philipp, Oike, Keiko, Nomura, Taiji, Kato, Yasuo, Asano, Yasuhisa, and Gröger, Harald. 2018. “Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases”. ChemBioChem 19 (8): 768-779.
Betke, T., Higuchi, J., Rommelmann, P., Oike, K., Nomura, T., Kato, Y., Asano, Y., and Gröger, H. (2018). Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. ChemBioChem 19, 768-779.
Betke, T., et al., 2018. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. ChemBioChem, 19(8), p 768-779.
T. Betke, et al., “Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases”, ChemBioChem, vol. 19, 2018, pp. 768-779.
Betke, T., Higuchi, J., Rommelmann, P., Oike, K., Nomura, T., Kato, Y., Asano, Y., Gröger, H.: Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases. ChemBioChem. 19, 768-779 (2018).
Betke, Tobias, Higuchi, Jun, Rommelmann, Philipp, Oike, Keiko, Nomura, Taiji, Kato, Yasuo, Asano, Yasuhisa, and Gröger, Harald. “Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases”. ChemBioChem 19.8 (2018): 768-779.

58 References

Daten bereitgestellt von Europe PubMed Central.


Pollak, 2000

Arpe, 2007

AUTHOR UNKNOWN, 0
1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties.
Villhauer EB, Brinkman JA, Naderi GB, Burkey BF, Dunning BE, Prasad K, Mangold BL, Russell ME, Hughes TE., J. Med. Chem. 46(13), 2003
PMID: 12801240

Pellegatti, Org. Process Res. Dev. 19(), 2015

Savage, Org. Process Res. Dev. 13(), 2009

AUTHOR UNKNOWN, 0

Martin, 2015

AUTHOR UNKNOWN, 0

Bonds”, 1999

Gruber-Khadjawi, 2012

AUTHOR UNKNOWN, 0
Distribution of aldoxime dehydratase in microorganisms.
Kato Y, Ooi R, Asano Y., Appl. Environ. Microbiol. 66(6), 2000
PMID: 10831401

Asano, FEMS Microbiol. Lett. 158(), 1998

AUTHOR UNKNOWN, 0
X-ray crystal structure of michaelis complex of aldoxime dehydratase.
Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S., J. Biol. Chem. 284(46), 2009
PMID: 19740758
Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis.
Nomura J, Hashimoto H, Ohta T, Hashimoto Y, Wada K, Naruta Y, Oinuma K, Kobayashi M., Proc. Natl. Acad. Sci. U.S.A. 110(8), 2013
PMID: 23382199

Börner, 2016

AUTHOR UNKNOWN, 0
Metal-Involving Synthesis and Reactions of Oximes.
Bolotin DS, Bokach NA, Demakova MY, Kukushkin VY., Chem. Rev. 117(21), 2017
PMID: 28991449

Rappoport, 2009

Ma, Tetrahedron 69(), 2013

Rommelmann, Org. Process Res. Dev. 21(), 2017
Iron-Catalyzed Dehydration of Aldoximes to Nitriles Requiring Neither Other Reagents Nor Nitrile Media.
Hyodo K, Kitagawa S, Yamazaki M, Uchida K., Chem Asian J 11(9), 2016
PMID: 26910510

Denton, Tetrahedron 68(), 2012

AUTHOR UNKNOWN, 0

Kosjek, Tetrahedron: Asymmetry 19(), 2008
Catalytic asymmetric protonation of silyl ketene imines.
Guin J, Varseev G, List B., J. Am. Chem. Soc. 135(6), 2013
PMID: 23362931
Spectroscopic and substrate binding properties of heme-containing aldoxime dehydratases, OxdB and OxdRE.
Kobayashi K, Pal B, Yoshioka S, Kato Y, Asano Y, Kitagawa T, Aono S., J. Inorg. Biochem. 100(5-6), 2006
PMID: 16414119
Systematic regulation of the enzymatic activity of phenylacetaldoxime dehydratase by exogenous ligands.
Kobayashi K, Kubo M, Yoshioka S, Kitagawa T, Kato Y, Asano Y, Aono S., Chembiochem 7(12), 2006
PMID: 17009275
Identification of crucial histidines involved in carbon-nitrogen triple bond synthesis by aldoxime dehydratase.
Konishi K, Ishida K, Oinuma K, Ohta T, Hashimoto Y, Higashibata H, Kitagawa T, Kobayashi M., J. Biol. Chem. 279(46), 2004
PMID: 15339918

AUTHOR UNKNOWN, 0
Discovery of a reaction intermediate of aliphatic aldoxime dehydratase involving heme as an active center.
Konishi K, Ohta T, Oinuma K, Hashimoto Y, Kitagawa T, Kobayashi M., Proc. Natl. Acad. Sci. U.S.A. 103(3), 2006
PMID: 16407114
Aldoxime dehydratase: probing the heme environment involved in the synthesis of the carbon-nitrogen triple bond.
Pinakoulaki E, Koutsoupakis C, Sawai H, Pavlou A, Kato Y, Asano Y, Aono S., J Phys Chem B 115(44), 2011
PMID: 21942263
QM/MM study on the catalytic mechanism of heme-containing aliphatic aldoxime dehydratase.
Pan XL, Cui FC, Liu W, Liu JY., J Phys Chem B 116(19), 2012
PMID: 22554192

Hart-Davis, J. Am. Chem. Soc. 120(), 1998
Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.
Irmisch S, Clavijo McCormick A, Gunther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Kollner TG., Plant J. 80(6), 2014
PMID: 25335755

Kato, J. Mol. Catal. B 6(), 1999

AUTHOR UNKNOWN, 0

Metzner, ChemCatChem 6(), 2014
Cyanide-Free and Broadly Applicable Enantioselective Synthetic Platform for Chiral Nitriles through a Biocatalytic Approach.
Betke T, Rommelmann P, Oike K, Asano Y, Groger H., Angew. Chem. Int. Ed. Engl. 56(40), 2017
PMID: 28671741

AUTHOR UNKNOWN, Angew. Chem. 129(), 2017
Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
Miao Y, Metzner R, Asano Y., Chembiochem 18(5), 2017
PMID: 28120515
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29333684
PubMed | Europe PMC

Suchen in

Google Scholar