Motion parallax in electric sensing

Pedraja F, Hofmann V, Lucas KM, Young C, Engelmann J, Lewis JE (2018)
Proceedings of the National Academy of Sciences 115(3): 573-577.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Pedraja, Federico; Hofmann, VolkerUniBi; Lucas, Kathleen M.; Young, Colleen; Engelmann, JacobUniBi ; Lewis, John E.
Abstract / Bemerkung
A crucial step in forming spatial representations of the environment involves the estimation of relative distance. Active sampling through specific movements is considered essential for optimizing the sensory flow that enables the extraction of distance cues. However, in electric sensing, direct evidence for the generation and exploitation of sensory flow is lacking. Weakly electric fish rely on a self-generated electric field to navigate and capture prey in the dark. This electric sense provides a blurred representation of the environment, making the exquisite sensory abilities of electric fish enigmatic. Stereotyped back-and-forth swimming patterns reminiscent of visual peering movements are suggestive of the active generation of sensory flow, but how motion contributes to the disambiguation of the electrosensory world remains unclear. Here, we show that a dipole-like electric field geometry coupled to motion provides the physical basis for a nonvisual parallax. We then show in a behavioral assay that this cue is used for electrosensory distance perception across phylogenetically distant taxa of weakly electric fish. Notably, these species electrically sample the environment in temporally distinct ways (using discrete pulses or quasisinusoidal waves), suggesting a ubiquitous role for parallax in electric sensing. Our results demonstrate that electrosensory information is extracted from sensory flow and used in a behaviorally relevant context. A better understanding of motion-based electric sensing will provide insight into the sensorimotor coordination required for active sensing in general and may lead to improved electric field-based imaging applications in a variety of contexts.
Stichworte
active sensing; distance perception; sensory flow; weakly electric fish
Erscheinungsjahr
2018
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
115
Ausgabe
3
Seite(n)
573-577
ISSN
0027-8424, 1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2916901

Zitieren

Pedraja F, Hofmann V, Lucas KM, Young C, Engelmann J, Lewis JE. Motion parallax in electric sensing. Proceedings of the National Academy of Sciences. 2018;115(3):573-577.
Pedraja, F., Hofmann, V., Lucas, K. M., Young, C., Engelmann, J., & Lewis, J. E. (2018). Motion parallax in electric sensing. Proceedings of the National Academy of Sciences, 115(3), 573-577. doi:10.1073/pnas.1712380115
Pedraja, Federico, Hofmann, Volker, Lucas, Kathleen M., Young, Colleen, Engelmann, Jacob, and Lewis, John E. 2018. “Motion parallax in electric sensing”. Proceedings of the National Academy of Sciences 115 (3): 573-577.
Pedraja, F., Hofmann, V., Lucas, K. M., Young, C., Engelmann, J., and Lewis, J. E. (2018). Motion parallax in electric sensing. Proceedings of the National Academy of Sciences 115, 573-577.
Pedraja, F., et al., 2018. Motion parallax in electric sensing. Proceedings of the National Academy of Sciences, 115(3), p 573-577.
F. Pedraja, et al., “Motion parallax in electric sensing”, Proceedings of the National Academy of Sciences, vol. 115, 2018, pp. 573-577.
Pedraja, F., Hofmann, V., Lucas, K.M., Young, C., Engelmann, J., Lewis, J.E.: Motion parallax in electric sensing. Proceedings of the National Academy of Sciences. 115, 573-577 (2018).
Pedraja, Federico, Hofmann, Volker, Lucas, Kathleen M., Young, Colleen, Engelmann, Jacob, and Lewis, John E. “Motion parallax in electric sensing”. Proceedings of the National Academy of Sciences 115.3 (2018): 573-577.

4 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sensory Cues Modulate Smooth Pursuit and Active Sensing Movements.
Uyanik I, Stamper SA, Cowan NJ, Fortune ES., Front Behav Neurosci 13(), 2019
PMID: 31024269
Population Coding and Correlated Variability in Electrosensory Pathways.
Hofmann V, Chacron MJ., Front Integr Neurosci 12(), 2018
PMID: 30542271

44 References

Daten bereitgestellt von Europe PubMed Central.

Depth and motion in historical descriptions of motion parallax.
Ono H, Wade NJ., Perception 34(10), 2005
PMID: 16309119
The optic flow field: the foundation of vision.
Lee DN., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 290(1038), 1980
PMID: 6106236
Visual control of navigation in insects and its relevance for robotics.
Srinivasan MV., Curr. Opin. Neurobiol. 21(4), 2011
PMID: 21689925
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209

Moller P., 2005
Active electroreception: Signals, sensing, and behavior
Lewis JE., 2014
Electric organ discharges and electric images during electrolocation.
Assad C, Rasnow B, Stoddard PK., J. Exp. Biol. 202(Pt 10), 1999
PMID: 10210660
Peripheral electrosensory imaging by weakly electric fish.
Caputi AA, Budelli R., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16501980
Electric imaging through evolution, a modeling study of commonalities and differences.
Pedraja F, Aguilera P, Caputi AA, Budelli R., PLoS Comput. Biol. 10(7), 2014
PMID: 25010765
Sensory acquisition in active sensing systems.
Nelson ME, MacIver MA., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 192(6), 2006
PMID: 16645885
The effects of simple objects on the electric field of Apteronotus
Rasnow B., 1996
Electric fish measure distance in the dark.
von der Emde G, Schwarz S, Gomez L, Budelli R, Grant K., Nature 395(6705), 1998
PMID: 9804420
Omnidirectional sensory and motor volumes in electric fish.
Snyder JB, Nelson ME, Burdick JW, Maciver MA., PLoS Biol. 5(11), 2007
PMID: 18001151
Why do electric fishes swim backwards? An hypothesis based on gymnotiform foraging behavior interpreted through sensory constraints
Lannoo MJ, Lannoo SJ., 1993
Motor programmes and electroreception in mormyrid fish
Toerring MJ, Belbenoit P., 1979
Sensory flow shaped by active sensing: sensorimotor strategies in electric fish.
Hofmann V, Sanguinetti-Scheck JI, Kunzel S, Geurten B, Gomez-Sena L, Engelmann J., J. Exp. Biol. 216(Pt 13), 2013
PMID: 23761474
Motor patterns during active electrosensory acquisition.
Hofmann V, Geurten BR, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J., Front Behav Neurosci 8(), 2014
PMID: 24904337
Sensory Flow as a Basis for a Novel Distance Cue in Freely Behaving Electric Fish.
Hofmann V, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J., J. Neurosci. 37(2), 2017
PMID: 28077710
Active sensing via movement shapes spatiotemporal patterns of sensory feedback.
Stamper SA, Roth E, Cowan NJ, Fortune ES., J. Exp. Biol. 215(Pt 9), 2012
PMID: 22496294
Neural maps in the electrosensory system of weakly electric fish.
Krahe R, Maler L., Curr. Opin. Neurobiol. 24(1), 2013
PMID: 24492073
Perception and coding of envelopes in weakly electric fishes.
Stamper SA, Fortune ES, Chacron MJ., J. Exp. Biol. 216(Pt 13), 2013
PMID: 23761464
Speed-invariant encoding of looming object distance requires power law spike rate adaptation.
Clarke SE, Naud R, Longtin A, Maler L., Proc. Natl. Acad. Sci. U.S.A. 110(33), 2013
PMID: 23898185
The neural dynamics of sensory focus.
Clarke SE, Longtin A, Maler L., Nat Commun 6(), 2015
PMID: 26549346
Electrolocation of objects in the electric fish Eigenmannia
Heiligenberg W., 1973
Dynamic modulation of visual and electrosensory gains for locomotor control.
Sutton EE, Demir A, Stamper SA, Fortune ES, Cowan NJ., J R Soc Interface 13(118), 2016
PMID: 27170650
Spectral sensitivity of the weakly discharging electric fish Gnathonemus petersi using its electric organ discharges as the response measure
Ciali S, Gordon J, Moller P., 1997
Central neuroanatomy of electrosensory systems in fish
Bell C, Maler L., 2005
Electric organs and their control
Caputi AA, Carlson BA, Macadar O., 2005
Electric imaging through active electrolocation: implication for the analysis of complex scenes.
Engelmann J, Bacelo J, Metzen M, Pusch R, Bouton B, Migliaro A, Caputi A, Budelli R, Grant K, von der Emde G., Biol Cybern 98(6), 2008
PMID: 18491164
From sparks to spikes: information processing in the electrosensory systems of fish.
Sawtell NB, Williams A, Bell CC., Curr. Opin. Neurobiol. 15(4), 2005
PMID: 16009545
Motion parallax processing in pigeon (Columba livia) pretectal neurons.
Xiao Q, Frost BJ., Eur. J. Neurosci. 37(7), 2013
PMID: 23294181

Duchon AP, Warren WH., 1994
Optic flow-based collision-free strategies: From insects to robots.
Serres JR, Ruffier F., Arthropod Struct Dev 46(5), 2017
PMID: 28655645
Sensory and motor effects of etomidate anesthesia.
Engelmann J, Bacelo J, van den Burg E, Grant K., J. Neurophysiol. 95(2), 2005
PMID: 16267119
Electric images of two low resistance objects in weakly electric fish.
Rother D, Migliaro A, Canetti R, Gomez L, Caputi A, Budelli R., BioSystems 71(1-2), 2003
PMID: 14568217
Modeling the electric field of weakly electric fish.
Babineau D, Longtin A, Lewis JE., J. Exp. Biol. 209(Pt 18), 2006
PMID: 16943504
Spatial acuity and prey detection in weakly electric fish.
Babineau D, Lewis JE, Longtin A., PLoS Comput. Biol. 3(3), 2007
PMID: 17335346
Electrolocation in the presence of jamming signals: behavior.
Bastian J., J. Comp. Physiol. A 161(6), 1987
PMID: 3430413
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29295924
PubMed | Europe PMC

Suchen in

Google Scholar