Local motion adaptation enhances the representation of spatial structure at EMD arrays

Li J, Lindemann JP, Egelhaaf M (2017)
PLOS Computational Biology 13(12): e1005919.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 5.34 MB
Abstract / Bemerkung
Neuronal representation and extraction of spatial information are essential for behavioral control. For flying insects, a plausible way to gain spatial information is to exploit distancedependent optic flow that is generated during translational self-motion. Optic flow is computed by arrays of local motion detectors retinotopically arranged in the second neuropile layer of the insect visual system. These motion detectors have adaptive response characteristics, i.e. their responses to motion with a constant or only slowly changing velocity decrease, while their sensitivity to rapid velocity changes is maintained or even increases. We analyzed by a modeling approach how motion adaptation affects signal representation at the output of arrays of motion detectors during simulated flight in artificial and natural 3D environments. We focused on translational flight, because spatial information is only contained in the optic flow induced by translational locomotion. Indeed, flies, bees and other insects segregate their flight into relatively long intersaccadic translational flight sections interspersed with brief and rapid saccadic turns, presumably to maximize periods of translation (80% of the flight). With a novel adaptive model of the insect visual motion pathway we could show that the motion detector responses to background structures of cluttered environments are largely attenuated as a consequence of motion adaptation, while responses to foreground objects stay constant or even increase. This conclusion even holds under the dynamic flight conditions of insects.
Erscheinungsjahr
2017
Zeitschriftentitel
PLOS Computational Biology
Band
13
Ausgabe
12
Art.-Nr.
e1005919
ISSN
1553-7358
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2916669

Zitieren

Li J, Lindemann JP, Egelhaaf M. Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLOS Computational Biology. 2017;13(12): e1005919.
Li, J., Lindemann, J. P., & Egelhaaf, M. (2017). Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLOS Computational Biology, 13(12), e1005919. doi:10.1371/journal.pcbi.1005919
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. 2017. “Local motion adaptation enhances the representation of spatial structure at EMD arrays”. PLOS Computational Biology 13 (12): e1005919.
Li, J., Lindemann, J. P., and Egelhaaf, M. (2017). Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLOS Computational Biology 13:e1005919.
Li, J., Lindemann, J.P., & Egelhaaf, M., 2017. Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLOS Computational Biology, 13(12): e1005919.
J. Li, J.P. Lindemann, and M. Egelhaaf, “Local motion adaptation enhances the representation of spatial structure at EMD arrays”, PLOS Computational Biology, vol. 13, 2017, : e1005919.
Li, J., Lindemann, J.P., Egelhaaf, M.: Local motion adaptation enhances the representation of spatial structure at EMD arrays. PLOS Computational Biology. 13, : e1005919 (2017).
Li, Jinglin, Lindemann, Jens Peter, and Egelhaaf, Martin. “Local motion adaptation enhances the representation of spatial structure at EMD arrays”. PLOS Computational Biology 13.12 (2017): e1005919.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:52:30Z
MD5 Prüfsumme
7e0e0621c27dd60251303cfdb1257329


1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Spiking Neurons Integrating Visual Stimuli Orientation and Direction Selectivity in a Robotic Context.
Cyr A, Thériault F, Ross M, Berberian N, Chartier S., Front Neurorobot 12(), 2018
PMID: 30524261

64 References

Daten bereitgestellt von Europe PubMed Central.

Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Blowfly flight and optic flow. II. Head movements during flight
JH, Journal of Experimental Biology 202(11), 1999
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
C, The Journal of Experimental Biology 202(), 1999
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains
M, Frontiers in Neural Circuits 8(127), 2014
Neural networks in the cockpit of the fly.
Borst A, Haag J., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(6), 2002
PMID: 12122462
Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus
B, Zeitschrift für Naturforschung B 11(9-10), 1956
Visual motion and its role in the stabilization of gaze
M, 1993
Complementary mechanisms create direction selectivity in the fly.
Haag J, Arenz A, Serbe E, Gabbiani F, Borst A., Elife 5(), 2016
PMID: 27502554
Invertebrate vision
M, 2006
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila.
Reiff DF, Plett J, Mank M, Griesbeck O, Borst A., Nat. Neurosci. 13(8), 2010
PMID: 20622873
Defining the computational structure of the motion detector in Drosophila.
Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR., Neuron 70(6), 2011
PMID: 21689602
Processing properties of ON and OFF pathways for Drosophila motion detection.
Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C., Nature 512(7515), 2014
PMID: 25043016
Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision.
Mauss AS, Meier M, Serbe E, Borst A., J. Neurosci. 34(6), 2014
PMID: 24501364
Four to Foxtrot: How Visual Motion Is Computed in the Fly Brain.
Tuthill JC, Borghuis BG., Neuron 89(4), 2016
PMID: 26889807
Functional Specialization of Neural Input Elements to the Drosophila ON Motion Detector.
Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A., Curr. Biol. 25(17), 2015
PMID: 26234212
Orientation Selectivity Sharpens Motion Detection in Drosophila.
Fisher YE, Silies M, Clandinin TR., Neuron 88(2), 2015
PMID: 26456048
The Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input Elements.
Arenz A, Drews MS, Richter FG, Ammer G, Borst A., Curr. Biol. 27(7), 2017
PMID: 28343964
Peripheral processing facilitates optic flow-based depth perception
J, Frontiers in Computational Neuroscience 10(), 2016
A simple coding procedure enhances a neuron’s information capacity
SB, Zeitschrift für Naturforschung C 36(9-10), 1981
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164
Adaptation reduces sensitivity to save energy without information loss in the fly visual system
N, Proceedings of The Physiological Society 22(), 2011
Adaptation of the Motion-Sensitive Neuron H1 is Generated Locally and Governed by Contrast Frequency
T, Frontiers in Computational Neuroscience 225(), 1985
Adaptation accentuates responses of fly motion-sensitive visual neurons to sudden stimulus changes.
Kurtz R, Egelhaaf M, Meyer HG, Kern R., Proc. Biol. Sci. 276(1673), 2009
PMID: 19656791
Contrast gain reduction in fly motion adaptation.
Harris RA, O'Carroll DC, Laughlin SB., Neuron 28(2), 2000
PMID: 11144367
Adaptation of response transients in fly motion vision. I: Experiments.
Reisenman C, Haag J, Borst A., Vision Res. 43(11), 2003
PMID: 12726835
Internal structure of the fly elementary motion detector.
Eichner H, Joesch M, Schnell B, Reiff DF, Borst A., Neuron 70(6), 2011
PMID: 21689601
Motion detection in flies: parametric control over ON-OFF pathways.
Riehle A, Franceschini N., Exp Brain Res 54(2), 1984
PMID: 6723860
Common circuit design in fly and mammalian motion vision.
Borst A, Helmstaedter M., Nat. Neurosci. 18(8), 2015
PMID: 26120965
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Translational sequences of panoramic high dynamic range images in natural environments
A, 2014
Mechanisms of after-hyperpolarization following activation of fly visual motion-sensitive neurons.
Kurtz R, Beckers U, Hundsdorfer B, Egelhaaf M., Eur. J. Neurosci. 30(4), 2009
PMID: 19674090
Cellular evidence for efference copy in Drosophila visuomotor processing.
Kim AJ, Fitzgerald JK, Maimon G., Nat. Neurosci. 18(9), 2015
PMID: 26237362
Quantitative Predictions Orchestrate Visual Signaling in Drosophila.
Kim AJ, Fenk LM, Lyu C, Maimon G., Cell 168(1-2), 2017
PMID: 28065412
Adaptation of transient responses of a movement-sensitive neuron in the visual system of the blowfly Calliphora erythrocephala
R, Biological Cybernetics 54(4), 1986
Temporal modulation of luminance adapts time constant of fly movement detectors
A, Biological Cybernetics 56(4), 1987
An adaptive Reichardt detector model of motion adaptation in insects and mammals
CW, Visual Neuroscience 14(04), 1997
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Motion adaptation facilitates optic flow-based spatial vision
J, 2017
Some informational aspects of visual perception.
ATTNEAVE F., Psychol Rev 61(3), 1954
PMID: 13167245
Sensory adaptation.
Wark B, Lundstrom BN, Fairhall A., Curr. Opin. Neurobiol. 17(4), 2007
PMID: 17714934
Processing of low-probability sounds by cortical neurons.
Ulanovsky N, Las L, Nelken I., Nat. Neurosci. 6(4), 2003
PMID: 12652303
Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly
SB, Journal of Comparative Physiology 128(4), 1978
Transfer of graded potentials at the photoreceptor-interneuron synapse.
Juusola M, Uusitalo RO, Weckstrom M., J. Gen. Physiol. 105(1), 1995
PMID: 7537323
Global versus local adaptation in fly motion-sensitive neurons.
Neri P, Laughlin SB., Proc. Biol. Sci. 272(1578), 2005
PMID: 16191636
Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
Heitwerth J, Kern R, van Hateren JH, Egelhaaf M., J. Neurophysiol. 94(3), 2005
PMID: 15917319
Goal seeking in honeybees: matching of optic flow snapshots?
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
Blowfly flight characteristics are shaped by environmental features and controlled by optic flow information.
Kern R, Boeddeker N, Dittmar L, Egelhaaf M., J. Exp. Biol. 215(Pt 14), 2012
PMID: 22723490
Fly visual course control: behaviour, algorithms and circuits.
Borst A., Nat. Rev. Neurosci. 15(9), 2014
PMID: 25116140
The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster
LF, Journal of Experimental Biology 205(3), 2002

AUTHOR UNKNOWN, 0
Honeybee navigation en route to the goal: visual flight control and odometry
M, Journal of Experimental Biology 199(1), 1996
Odometry and insect navigation.
Wolf H., J. Exp. Biol. 214(Pt 10), 2011
PMID: 21525309
Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 29281631
PubMed | Europe PMC

Suchen in

Google Scholar