A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter

Hoffmann SA, Wohltat C, Müller K, Arndt KM (2017)
PLOS ONE 12(7): e0181923.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.
Erscheinungsjahr
Zeitschriftentitel
PLOS ONE
Band
12
Ausgabe
7
Art.-Nr.
e0181923
ISSN
PUB-ID

Zitieren

Hoffmann SA, Wohltat C, Müller K, Arndt KM. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLOS ONE. 2017;12(7): e0181923.
Hoffmann, S. A., Wohltat, C., Müller, K., & Arndt, K. M. (2017). A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLOS ONE, 12(7), e0181923. doi:10.1371/journal.pone.0181923
Hoffmann, S. A., Wohltat, C., Müller, K., and Arndt, K. M. (2017). A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLOS ONE 12:e0181923.
Hoffmann, S.A., et al., 2017. A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLOS ONE, 12(7): e0181923.
S.A. Hoffmann, et al., “A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter”, PLOS ONE, vol. 12, 2017, : e0181923.
Hoffmann, S.A., Wohltat, C., Müller, K., Arndt, K.M.: A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter. PLOS ONE. 12, : e0181923 (2017).
Hoffmann, Stefan A., Wohltat, Christian, Müller, Kristian, and Arndt, Katja M. “A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter”. PLOS ONE 12.7 (2017): e0181923.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

18 References

Daten bereitgestellt von Europe PubMed Central.

Nitrogen regulation in bacteria and archaea.
Leigh JA, Dodsworth JA., Annu. Rev. Microbiol. 61(), 2007
PMID: 17506680
Growth phase-dependent modification of RNA polymerase in Escherichia coli.
Ozaki M, Wada A, Fujita N, Ishihama A., Mol. Gen. Genet. 230(1-2), 1991
PMID: 1745227
Growth rate-dependent global effects on gene expression in bacteria.
Klumpp S, Zhang Z, Hwa T., Cell 139(7), 2009
PMID: 20064380
The enduring utility of continuous culturing in experimental evolution.
Gresham D, Dunham MJ., Genomics 104(6 Pt A), 2014
PMID: 25281774
Design and use of multiplexed chemostat arrays.
Miller AW, Befort C, Kerr EO, Dunham MJ., J Vis Exp (72), 2013
PMID: 23462663
Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1.
Avrahami-Moyal L, Engelberg D, Wenger JW, Sherlock G, Braun S., FEMS Yeast Res. 12(5), 2012
PMID: 22443114
A system for the continuous directed evolution of biomolecules.
Esvelt KM, Carlson JC, Liu DR., Nature 472(7344), 2011
PMID: 21478873
Evolutionary paths to antibiotic resistance under dynamically sustained drug selection.
Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R., Nat. Genet. 44(1), 2011
PMID: 22179135
Metabolic changes underlying the higher accumulation of glutathione in Saccharomyces cerevisiae mutants.
Nisamedtinov I, Kevvai K, Orumets K, Arike L, Sarand I, Korhola M, Paalme T., Appl. Microbiol. Biotechnol. 89(4), 2010
PMID: 21052993
A low cost, customizable turbidostat for use in synthetic circuit characterization.
Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E., ACS Synth Biol 4(1), 2014
PMID: 25036317
A Small-Volume, Low-Cost, and Versatile Continuous Culture Device.
Matteau D, Baby V, Pelletier S, Rodrigue S., PLoS ONE 10(7), 2015
PMID: 26197065
Development of a novel continuous culture device for experimental evolution of bacterial populations.
de Crecy E, Metzgar D, Allen C, Penicaud M, Lyons B, Hansen CJ, de Crecy-Lagard V., Appl. Microbiol. Biotechnol. 77(2), 2007
PMID: 17896105
A New Approach to Linear Filtering and Prediction Problems
AUTHOR UNKNOWN, 1960

AUTHOR UNKNOWN, 1994

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28746418
PubMed | Europe PMC

Suchen in

Google Scholar