Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding

Jadhav S, Amabili P, Stammler H-G, Sewald N (2017)
CHEMISTRY 23(43): 10352-10357.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Gabapentin, an antiepileptic drug, is known to form stable helical structures in short peptides. Distinctly, we report on the newly synthesized g-analogue of gabapentin, that is, gamma-gabapentin (gamma-Gpn), which manifests beta-sheet character at molecular and nanofibrous hydrogels at the supramolecular level. We investigated the influence of proximally immobilized cationic amino acids (lysine and arginine) on the self-assembly of backbone-expanded tripeptide motif. Interestingly, arginine was found to be superior, both physically and mechanically, over lysine in driving hydrogelation. We have concluded that intrinsic and biochemically distinct properties of the guanidinium ion of arginine (compared to ammonium ion of lysine) have contributed towards this effect. Furthermore, similar to pyroglutamyl (pGlu) modified amyloid beta peptides, N-pGlu modification of our self-assembling tripeptide motif exerts a dramatic influence on aggregation and exhibits enhanced beta-sheet character, accelerated self-assembly kinetics, improved optical transparency and provides higher mechanical stiffness to the peptide hydrogel.
biomaterial; foldamer; hydrogel; peptides; supramolecular chemistry
Page URI


Jadhav S, Amabili P, Stammler H-G, Sewald N. Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding. CHEMISTRY. 2017;23(43):10352-10357.
Jadhav, S., Amabili, P., Stammler, H. - G., & Sewald, N. (2017). Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding. CHEMISTRY, 23(43), 10352-10357. doi:10.1002/chem.201701450
Jadhav, S., Amabili, P., Stammler, H. - G., and Sewald, N. (2017). Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding. CHEMISTRY 23, 10352-10357.
Jadhav, S., et al., 2017. Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding. CHEMISTRY, 23(43), p 10352-10357.
S. Jadhav, et al., “Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding”, CHEMISTRY, vol. 23, 2017, pp. 10352-10357.
Jadhav, S., Amabili, P., Stammler, H.-G., Sewald, N.: Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding. CHEMISTRY. 23, 10352-10357 (2017).
Jadhav, Sandip, Amabili, Paolo, Stammler, Hans-Georg, and Sewald, Norbert. “Remarkable Modulation of Self-Assembly in Short gamma-Peptides by Neighboring Ions and Orthogonal H-Bonding”. CHEMISTRY 23.43 (2017): 10352-10357.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

72 References

Daten bereitgestellt von Europe PubMed Central.

Supramolecular biomaterials.
Webber MJ, Appel EA, Meijer EW, Langer R., Nat Mater 15(1), 2016
PMID: 26681596


Aleman, 2013

Deming, 2012

Designer self-assembling peptide nanofiber biological materials.
Hauser CA, Zhang S., Chem Soc Rev 39(8), 2010
PMID: 20520907
Self-assembled proteins and peptides for regenerative medicine.
Hosseinkhani H, Hong PD, Yu DS., Chem. Rev. 113(7), 2013
PMID: 23547530

Pericellular hydrogel/nanonets inhibit cancer cells.
Kuang Y, Shi J, Li J, Yuan D, Alberti KA, Xu Q, Xu B., Angew. Chem. Int. Ed. Engl. 53(31), 2014
PMID: 24820524

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014
Peptide Bioink: Self-Assembling Nanofibrous Scaffolds for Three-Dimensional Organotypic Cultures.
Loo Y, Lakshmanan A, Ni M, Toh LL, Wang S, Hauser CA., Nano Lett. 15(10), 2015
PMID: 26214046
A self-assembling peptide acting as an immune adjuvant.
Rudra JS, Tian YF, Jung JP, Collier JH., Proc. Natl. Acad. Sci. U.S.A. 107(2), 2009
PMID: 20080728
A multiphase transitioning peptide hydrogel for suturing ultrasmall vessels.
Smith DJ, Brat GA, Medina SH, Tong D, Huang Y, Grahammer J, Furtmuller GJ, Oh BC, Nagy-Smith KJ, Walczak P, Brandacher G, Schneider JP., Nat Nanotechnol 11(1), 2015
PMID: 26524396
Hydrogels and scaffolds for immunomodulation.
Singh A, Peppas NA., Adv. Mater. Weinheim 26(38), 2014
PMID: 25155610

Hydrogels as extracellular matrix mimics for 3D cell culture.
Tibbitt MW, Anseth KS., Biotechnol. Bioeng. 103(4), 2009
PMID: 19472329
A practical guide to hydrogels for cell culture.
Caliari SR, Burdick JA., Nat. Methods 13(5), 2016
PMID: 27123816

Dynamic peptide libraries for the discovery of supramolecular nanomaterials.
Pappas CG, Shafi R, Sasselli IR, Siccardi H, Wang T, Narang V, Abzalimov R, Wijerathne N, Ulijn RV., Nat Nanotechnol 11(11), 2016
PMID: 27694850
De novo design and experimental characterization of ultrashort self-associating peptides.
Smadbeck J, Chan KH, Khoury GA, Xue B, Robinson RC, Hauser CA, Floudas CA., PLoS Comput. Biol. 10(7), 2014
PMID: 25010703
Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels.
Frederix PW, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV, Tuttle T., Nat Chem 7(1), 2014
PMID: 25515887


Jonker, Chem. Mater. 24(), 2012

Dasgupta, RSC Adv. 3(), 2013
Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes.
Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE., Nature 386(6622), 1997
PMID: 9069283
Rational design and application of responsive alpha-helical peptide hydrogels.
Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A, Donald AM, Kirkland M, Serpell LC, Butler MF, Woolfson DN., Nat Mater 8(7), 2009
PMID: 19543314

Self-assembly of a cyclobutane beta-tetrapeptide to form nanosized structures.
Rua F, Boussert S, Parella T, Diez-Perez I, Branchadell V, Giralt E, Ortuno RM., Org. Lett. 9(18), 2007
PMID: 17663562
Self-assembly of chiral trans-cyclobutane-containing β-dipeptides into ordered aggregates.
Gorrea E, Nolis P, Torres E, Da Silva E, Amabilino DB, Branchadell V, Ortuno RM., Chemistry 17(16), 2011
PMID: 21404341
Remarkable thermoresponsive nanofibers from γ-peptides.
Jadhav SV, Gopi HN., Chem. Commun. (Camb.) 49(80), 2013
PMID: 23989185

Supramolecular hydrogels based on beta-amino acid derivatives.
Yang Z, Liang G, Xu B., Chem. Commun. (Camb.) (7), 2006
PMID: 16465324


The mechanisms of action of gabapentin and pregabalin.
Sills GJ., Curr Opin Pharmacol 6(1), 2005
PMID: 16376147
Gabapentin in the treatment of fibromyalgia: a randomized, double-blind, placebo-controlled, multicenter trial.
Arnold LM, Goldenberg DL, Stanford SB, Lalonde JK, Sandhu HS, Keck PE Jr, Welge JA, Bishop F, Stanford KE, Hess EV, Hudson JI., Arthritis Rheum. 56(4), 2007
PMID: 17393438

C9 helices and ribbons in gamma-peptides: crystal structures of gabapentin oligomers.
Vasudev PG, Shamala N, Ananda K, Balaram P., Angew. Chem. Int. Ed. Engl. 44(31), 2005
PMID: 16003813

AUTHOR UNKNOWN, Angew. Chem. 117(), 2005
Gabapentin: a stereochemically constrained gamma amino acid residue in hybrid peptide design.
Vasudev PG, Chatterjee S, Shamala N, Balaram P., Acc. Chem. Res. 42(10), 2009
PMID: 19572698
Polymorphs of gabapentin.
Reece HA, Levendis DC., Acta Crystallogr C 64(Pt 3), 2008
PMID: 18322329

Parallel sheet secondary structure in gamma-peptides.
Woll MG, Lai JR, Guzei IA, Taylor SJ, Smith ME, Gellman SH., J. Am. Chem. Soc. 123(44), 2001
PMID: 11686719

Reddy, New J. Chem. 39(), 2015
Polymorphism of oligomers of a peptide from β-amyloid.
Pham JD, Demeler B, Nowick JS., J. Am. Chem. Soc. 136(14), 2014
PMID: 24669785

Dramatic specific-ion effect in supramolecular hydrogels.
Roy S, Javid N, Frederix PW, Lamprou DA, Urquhart AJ, Hunt NT, Halling PJ, Ulijn RV., Chemistry 18(37), 2012
PMID: 22888053
A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens.
Borders CL Jr, Broadwater JA, Bekeny PA, Salmon JE, Lee AS, Eldridge AM, Pett VB., Protein Sci. 3(4), 1994
PMID: 8003972
The molecular origin of like-charge arginine-arginine pairing in water.
Vondrasek J, Mason PE, Heyda J, Collins KD, Jungwirth P., J Phys Chem B 113(27), 2009
PMID: 19354258

Modulation of hydrophobic interactions by proximally immobilized ions.
Ma CD, Wang C, Acevedo-Velez C, Gellman SH, Abbott NL., Nature 517(7534), 2015
PMID: 25592540
Ionic interactions. Subnanoscale hydrophobic modulation of salt bridges in aqueous media.
Chen S, Itoh Y, Masuda T, Shimizu S, Zhao J, Ma J, Nakamura S, Okuro K, Noguchi H, Uosaki K, Aida T., Science 348(6234), 2015
PMID: 25931555

Enhanced Fibril Fragmentation of N-Terminally Truncated and Pyroglutamyl-Modified Aβ Peptides.
Wulff M, Baumann M, Thummler A, Yadav JK, Heinrich L, Knupfer U, Schlenzig D, Schierhorn A, Rahfeld JU, Horn U, Balbach J, Demuth HU, Fandrich M., Angew. Chem. Int. Ed. Engl. 55(16), 2016
PMID: 26970534

AUTHOR UNKNOWN, Angew. Chem. 128(), 2016
Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides.
Schlenzig D, Manhart S, Cinar Y, Kleinschmidt M, Hause G, Willbold D, Funke SA, Schilling S, Demuth HU., Biochemistry 48(29), 2009
PMID: 19518051
Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease.
Jawhar S, Wirths O, Bayer TA., J. Biol. Chem. 286(45), 2011
PMID: 21965666

Vibrational analysis of crystalline tri-L-alanine.
Qian W, Bandekar J, Krimm S., Biopolymers 31(2), 1991
PMID: 2043750
Mechanism by which 2,2,2-trifluoroethanol/water mixtures stabilize secondary-structure formation in peptides: a molecular dynamics study.
Roccatano D, Colombo G, Fioroni M, Mark AE., Proc. Natl. Acad. Sci. U.S.A. 99(19), 2002
PMID: 12196631

Circular dichroism studies of isoleucine oligopeptides in solution.
Goodman M, Naider F, Toniolo C., Biopolymers 10(9), 1971
PMID: 5126135
Ultraviolet rotatory properties of polypeptides in solution. II. Poly-L-serine.
Quadrifoglio F, Urry DW., J. Am. Chem. Soc. 90(11), 1968
PMID: 5648109


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 28590582
PubMed | Europe PMC

Suchen in

Google Scholar