Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria

Bednarz H, Niehaus K (2017)
JOURNAL OF BIOTECHNOLOGY 257: 139-149.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Conventional methods used for the in vivo analysis of subcellular protein localizations and their spatio-temporal dynamics in prokaryotes are based on either the engineering of N(amino)- or C(carboxy)-terminal fusions of fluorescent proteins with the protein of interest, or involved probing internal sites for tag integration. In addition, the use of inducible or constitutive promoters for the expression of fluorescent fusion proteins can lead to overexpression and result in localization artifacts. Here, we describe a method for the synthesis of fluorescent fusion proteins using transposable elements, which can randomly integrate in the internal sections of the protein coding sequence to produce full-length fluorescent fusion proteins expressed at endogenous levels. The established method was used for investigating subcellular localization of proteins in the soil bacterium and plant symbiont Sinorhizobium meliloti. Two constructs for transposition-based insertion of the enhanced green fluorescent protein (eGFP), as well as for in vivo excision of the selection marker for the production of full-length proteins were engineered. Conjugation with pHB14 plasmid and induction of the transposition in S. meliloti produced approx. 3.22 x 10(4) transconjugant colonies harboring the fluorescent marker with the transposition efficiency of 0.8%. Sixteen randomly targeted proteins of diverse functions, fused to the eGFP were identified and analyzed in living cells by epifluorescence microscopy, demonstrating the suitability of the novel tool for massive, random production of fluorescent proteins and for following of these proteins with different localizations inside the prokaryotic cell. (C) 2016 Elsevier B.V. All rights reserved.
Erscheinungsjahr
Zeitschriftentitel
JOURNAL OF BIOTECHNOLOGY
Band
257
Seite(n)
139-149
ISSN
eISSN
PUB-ID

Zitieren

Bednarz H, Niehaus K. Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria. JOURNAL OF BIOTECHNOLOGY. 2017;257:139-149.
Bednarz, H., & Niehaus, K. (2017). Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria. JOURNAL OF BIOTECHNOLOGY, 257, 139-149. doi:10.1016/j.jbiotec.2016.12.013
Bednarz, H., and Niehaus, K. (2017). Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria. JOURNAL OF BIOTECHNOLOGY 257, 139-149.
Bednarz, H., & Niehaus, K., 2017. Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria. JOURNAL OF BIOTECHNOLOGY, 257, p 139-149.
H. Bednarz and K. Niehaus, “Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria”, JOURNAL OF BIOTECHNOLOGY, vol. 257, 2017, pp. 139-149.
Bednarz, H., Niehaus, K.: Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria. JOURNAL OF BIOTECHNOLOGY. 257, 139-149 (2017).
Bednarz, Hanna, and Niehaus, Karsten. “Using transposition to introduce eGFP fusions in Sinorhizobium meliloti: A tool to analyze protein localization patterns in bacteria”. JOURNAL OF BIOTECHNOLOGY 257 (2017): 139-149.

60 References

Daten bereitgestellt von Europe PubMed Central.

Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.
Bakshi S, Siryaporn A, Goulian M, Weisshaar JC., Mol. Microbiol. 85(1), 2012
PMID: 22624875
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR., Proc. Natl. Acad. Sci. U.S.A. 98(17), 2001
PMID: 11481432
R factor transfer in Rhizobium leguminosarum.
Beringer JE., J. Gen. Microbiol. 84(1), 1974
PMID: 4612098
Single-molecule super-resolution imaging in bacteria.
Cattoni DI, Fiche JB, Nollmann M., Curr. Opin. Microbiol. 15(6), 2012
PMID: 23142583
Expression vectors for the use of eukaryotic luciferases as bacterial markers with different colors of luminescence.
Cebolla A, Vazquez ME, Palomares AJ., Appl. Environ. Microbiol. 61(2), 1995
PMID: 7574604
Bayesian localization microscopy reveals nanoscale podosome dynamics.
Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R., Nat. Methods 9(2), 2011
PMID: 22138825
Small subunits of RNA polymerase: localization, levels and implications for core enzyme composition.
Doherty GP, Fogg MJ, Wilkinson AJ, Lewis PJ., Microbiology (Reading, Engl.) 156(Pt 12), 2010
PMID: 20724389
Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging.
Gahlmann A, Moerner WE., Nat. Rev. Microbiol. 12(1), 2014
PMID: 24336182
The composite genome of the legume symbiont Sinorhizobium meliloti.
Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J., Science 293(5530), 2001
PMID: 11474104
Tn5 in vitro transposition.
Goryshin IY, Reznikoff WS., J. Biol. Chem. 273(13), 1998
PMID: 9516433
Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy.
Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J., PLoS Biol. 7(6), 2009
PMID: 19547746
Transposon assisted gene insertion technology (TAGIT): a tool for generating fluorescent fusion proteins.
Gregory JA, Becker EC, Jung J, Tuwatananurak I, Pogliano K., PLoS ONE 5(1), 2010
PMID: 20090956
Diffraction-unlimited all-optical imaging and writing with a photochromic GFP.
Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW., Nature 478(7368), 2011
PMID: 21909116
Studies on transformation of Escherichia coli with plasmids.
Hanahan D., J. Mol. Biol. 166(4), 1983
PMID: 6345791
Dynamic localization of membrane proteins in Bacillus subtilis.
Johnson AS, van Horck S, Lewis PJ., Microbiology (Reading, Engl.) 150(Pt 9), 2004
PMID: 15347741
Use of fluorescence microscopy to study intracellular signaling in bacteria.
Kentner D, Sourjik V., Annu. Rev. Microbiol. 64(), 2010
PMID: 20528689
Genome scanning for conditionally essential genes in Salmonella enterica Serotype Typhimurium.
Khatiwara A, Jiang T, Sung SS, Dawoud T, Kim JN, Bhattacharya D, Kim HB, Ricke SC, Kwon YM., Appl. Environ. Microbiol. 78(9), 2012
PMID: 22367088
The RNase E of Escherichia coli is a membrane-binding protein.
Khemici V, Poljak L, Luisi BF, Carpousis AJ., Mol. Microbiol. 70(4), 2008
PMID: 18976283
Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research.
Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H., DNA Res. 12(5), 2005
PMID: 16769691
The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.
Kohler PR, Choong EL, Rossbach S., J. Bacteriol. 193(19), 2011
PMID: 21784930
Proteome organization in a genome-reduced bacterium.
Kuhner S, van Noort V, Betts MJ, Leo-Macias A, Batisse C, Rode M, Yamada T, Maier T, Bader S, Beltran-Alvarez P, Castano-Diez D, Chen WH, Devos D, Guell M, Norambuena T, Racke I, Rybin V, Schmidt A, Yus E, Aebersold R, Herrmann R, Bottcher B, Frangakis AS, Russell RB, Serrano L, Bork P, Gavin AC., Science 326(5957), 2009
PMID: 19965468
Compartmentalization of transcription and translation in Bacillus subtilis.
Lewis PJ, Thaker SD, Errington J., EMBO J. 19(4), 2000
PMID: 10675340
Specific polar localization of ribosomes in Bacillus subtilis depends on active transcription.
Mascarenhas J, Weber MH, Graumann PL., EMBO Rep. 2(8), 2001
PMID: 11463749
Lipid domains in bacterial membranes.
Matsumoto K, Kusaka J, Nishibori A, Hara H., Mol. Microbiol. 61(5), 2006
PMID: 16925550
Imaging in systems biology.
Megason SG, Fraser SE., Cell 130(5), 2007
PMID: 17803903
Cardiolipin membrane domains in prokaryotes and eukaryotes.
Mileykovskaya E, Dowhan W., Biochim. Biophys. Acta 1788(10), 2009
PMID: 19371718
Why bioimage informatics matters.
Myers G., Nat. Methods 9(7), 2012
PMID: 22743769
Size dependence of protein diffusion in the cytoplasm of Escherichia coli.
Nenninger A, Mastroianni G, Mullineaux CW., J. Bacteriol. 192(18), 2010
PMID: 20581203
Probing the domain structure of FtsZ by random truncation and insertion of GFP.
Osawa M, Erickson HP., Microbiology (Reading, Engl.) 151(Pt 12), 2005
PMID: 16339948
An improved method of preparing wet mounts for photomicrographs of microorganisms
Pfennig, J. Microbiol. Methods 4(), 1986
Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of Sinorhizobium meliloti.
Pobigaylo N, Wetter D, Szymczak S, Schiller U, Kurtz S, Meyer F, Nattkemper TW, Becker A., Appl. Environ. Microbiol. 72(6), 2006
PMID: 16751548
Geometric cue for protein localization in a bacterium.
Ramamurthi KS, Lecuyer S, Stone HA, Losick R., Science 323(5919), 2009
PMID: 19265022
Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes.
Renner LD, Weibel DB., Proc. Natl. Acad. Sci. U.S.A. 108(15), 2011
PMID: 21444798
Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli.
Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM., Mol. Microbiol. 64(6), 2007
PMID: 17504273
Peptide signals encode protein localization.
Russell JH, Keiler KC., J. Bacteriol. 189(21), 2007
PMID: 17766408
Why and how bacteria localize proteins.
Shapiro L, McAdams HH, Losick R., Science 326(5957), 2009
PMID: 19965466
A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction.
Sheridan DL, Berlot CH, Robert A, Inglis FM, Jakobsdottir KB, Howe JR, Hughes TE., BMC Neurosci 3(), 2002
PMID: 12086589
Multiple displacement amplification for complex mixtures of DNA fragments.
Shoaib M, Baconnais S, Mechold U, Le Cam E, Lipinski M, Ogryzko V., BMC Genomics 9(), 2008
PMID: 18793430
A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria
Simon, Bio/Technology 1(), 1983
RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton.
Taghbalout A, Rothfield L., Proc. Natl. Acad. Sci. U.S.A. 104(5), 2007
PMID: 17242352

Vincent, 1970
Quantitative genome-scale analysis of protein localization in an asymmetric bacterium.
Werner JN, Chen EY, Guberman JM, Zippilli AR, Irgon JJ, Gitai Z., Proc. Natl. Acad. Sci. U.S.A. 106(19), 2009
PMID: 19416866
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly.
van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z., Proc. Natl. Acad. Sci. U.S.A. 108(38), 2011
PMID: 21903929

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 28007516
PubMed | Europe PMC

Suchen in

Google Scholar