Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes

Koch S, Kaiser CD, Penner P, Barclay M, Frommeyer L, Emmrich D, Stohmann P, Abu-Husein T, Terfort A, Fairbrother DH, Ingolfsson O, et al. (2017)
BEILSTEIN JOURNAL OF NANOTECHNOLOGY 8: 2562-2571.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
The determination of the negative ion yield of 2'-chloro-1,1'-biphenyl (2-Cl-BP), 2'-bromo-1,1'-biphenyl (2-Br-BP) and 2'-iodo-1,1'- biphenyl (2-I-BP) upon dissociative electron attachment (DEA) at an electron energy of 0 eV revealed cross section values that were more than ten times higher for iodide loss from 2-I-BP than for the other halogenides from the respective biphenyls (BPs). Comparison with dissociative ionization mass spectra shows that the ratio of the efficiency of electron impact ionization induced fragmentation of 2-I-BP, 2-Br-BP, and 2-Cl-BP amounts to approximately 1:0.7:0.6. Inspired by these results, self-assembled monolayers (SAMs) of the respective biphenyl-4-thiols, 2-Cl-BPT, 2-Br-BPT, 2-I-BPT as well as BPT, were grown on a Au(111) substrate and exposed to 50 eV electrons. The effect of electron irradiation was investigated by X-ray photoelectron spectroscopy (XPS), to determine whether the high relative DEA cross section for iodide loss from 2-I-BPT as compared to 2-Br-BP and 2-Cl-BP is reflected in the cross-linking efficiency of SAMs made from these materials. Such sensitization could reduce the electron dose needed for the cross-linking process and may thus lead to a significantly faster conversion of the respective SAMs into carbon nanomembranes (CNMs) without the need for an increased current density. XPS data support the notation that DEA sensitization may be used to achieve more efficient electron-induced cross-linking of SAMs, revealing more than ten times faster cross-linking of 2-I-BPT SAMs compared to those made from the other halogenated biphenyls or from native BPT at the same current density. Furthermore, the transfer of a freestanding membrane onto a TEM grid and the subsequent investigation by helium ion microscopy (HIM) verified the existence of a mechanically stable CNM created from 2-I-BPT after exposure to an electron dose as low as 1.8 mC/cm(2). In contrast, SAMs made from BPT, 2-Cl-BPT and 2-Br-BPT did not form stable CNMs after a significantly higher electron dose of 9 mC/cm(2).
Erscheinungsjahr
Zeitschriftentitel
BEILSTEIN JOURNAL OF NANOTECHNOLOGY
Band
8
Seite(n)
2562-2571
ISSN
PUB-ID

Zitieren

Koch S, Kaiser CD, Penner P, et al. Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 2017;8:2562-2571.
Koch, S., Kaiser, C. D., Penner, P., Barclay, M., Frommeyer, L., Emmrich, D., Stohmann, P., et al. (2017). Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 8, 2562-2571. doi:10.3762/bjnano.8.256
Koch, S., Kaiser, C. D., Penner, P., Barclay, M., Frommeyer, L., Emmrich, D., Stohmann, P., Abu-Husein, T., Terfort, A., Fairbrother, D. H., et al. (2017). Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 8, 2562-2571.
Koch, S., et al., 2017. Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 8, p 2562-2571.
S. Koch, et al., “Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes”, BEILSTEIN JOURNAL OF NANOTECHNOLOGY, vol. 8, 2017, pp. 2562-2571.
Koch, S., Kaiser, C.D., Penner, P., Barclay, M., Frommeyer, L., Emmrich, D., Stohmann, P., Abu-Husein, T., Terfort, A., Fairbrother, D.H., Ingolfsson, O., Gölzhäuser, A.: Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY. 8, 2562-2571 (2017).
Koch, Sascha, Kaiser, Christopher David, Penner, Paul, Barclay, Michael, Frommeyer, Lena, Emmrich, Daniel, Stohmann, Patrick, Abu-Husein, Tarek, Terfort, Andreas, Fairbrother, D. Howard, Ingolfsson, Oddur, and Gölzhäuser, Armin. “Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes”. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 8 (2017): 2562-2571.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Chemistry for electron-induced nanofabrication.
Swiderek P, Marbach H, Hagen CW., Beilstein J Nanotechnol 9(), 2018
PMID: 29977666

44 References

Daten bereitgestellt von Europe PubMed Central.

A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes.
Angelova P, Vieker H, Weber NE, Matei D, Reimer O, Meier I, Kurasch S, Biskupek J, Lorbach D, Wunderlich K, Chen L, Terfort A, Klapper M, Mullen K, Kaiser U, Golzhauser A, Turchanin A., ACS Nano 7(8), 2013
PMID: 23802686
Carbon Nanomembranes.
Turchanin A, Golzhauser A., Adv. Mater. Weinheim 28(29), 2016
PMID: 27281234

Eck W, Küller A, Grunze M, Völkel B, Gölzhäuser A., 2005
Fully cross-linked and chemically patterned self-assembled monolayers.
Beyer A, Godt A, Amin I, Nottbohm CT, Schmidt C, Zhao J, Golzhauser A., Phys Chem Chem Phys 10(48), 2008
PMID: 19060967
Vapor Phase Exchange of Self-Assembled Monolayers for Engineering of Biofunctional Surfaces.
Kankate L, Aguf A, Großmann H, Schnietz M, Tampe R, Turchanin A, Golzhauser A., Langmuir 33(15), 2017
PMID: 28340533
Chemically functionalized carbon nanosieves with 1-nm thickness.
Schnietz M, Turchanin A, Nottbohm CT, Beyer A, Solak HH, Hinze P, Weimann T, Golzhauser A., Small 5(23), 2009
PMID: 19787678

Turchanin A, Tinazli A, El-Desawy M, Grossann H, Schnietz M, Solak H, Tampé R, Gölzhäuser A., 2008

Turchanin A, Beyer A, Nottbohm C, Zhang X, Stosch R, Sologubenko A, Mayer J, Hinze P, Weimann T, Gölzhäuser A., 2009
Electron-beam induced cross-linking of aromatic self-assembled monolayers: A basis for nanolithography and free-standing nanosheets
Eck W, Gölzhäuser A, Grunze M, Kuller A, Shaporenko A, Tai W, Zharnikov M., 2013

Geyer W, Stadler V, Eck W, Gölzhäuser A, Grunze M, Sauer M, Weimann T, Hinze P., 2001

Geyer W, Stadler V, Eck W, Zharnikov M, Gölzhäuser A, Grunze M., 1999
Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography.
Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Golzhauser A., Small 3(12), 2007
PMID: 17960749
Fabrication of carbon nanomembranes by helium ion beam lithography.
Zhang X, Vieker H, Beyer A, Golzhauser A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605285

Beyer A, Turchanin A, Nottbohm C, Mellech N, Schnietz M, Gölzhäuser A., 2010
Molecular mechanisms of electron-induced cross-linking in aromatic SAMs.
Turchanin A, Kafer D, El-Desawy M, Woll C, Witte G, Golzhauser A., Langmuir 25(13), 2009
PMID: 19485375
Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs.
Amiaud L, Houplin J, Bourdier M, Humblot V, Azria R, Pradier CM, Lafosse A., Phys Chem Chem Phys 16(3), 2013
PMID: 24287704

Schaefer J, Hoelzl J., 1972

Schou J., 1988

Ohya K, Harada A, Kawata J, Nishimura K., 1996

Seah M., 1969

Nishimura K, Kawata J, Ohya K., 2000

Christophorou L., 2013

Fabrikant I, Eden S, Mason N, Fedor J., 2017

Bald I, Langer J, Tegeder P, Ingólfsson O., 2008

Arumainayagam C, Lee H-L, Nelson R, Haines D, Gunawardane R., 2010
Control of chemical reactions and synthesis by low-energy electrons.
Bohler E, Warneke J, Swiderek P., Chem Soc Rev 42(24), 2013
PMID: 24088739

Wigner E., 1948

Schramm A, Weber J, Kreil J, Klar D, Ruf M-W, Hotop H., 1998

Luo Y-R., 2007

Stein S., 2017

Pełech I, Narkiewicz U, Moszyński D, Pełech R., 2012
Adsorption of bromobenzene on periodically stepped and nonstepped NiO(100).
Petitto SC, Marsh EM, Langell MA., J Phys Chem B 110(3), 2006
PMID: 16471679

Hirayama M, Caseri W, Suter U., 1998

Turchanin A, Gölzhäuser A., 2012

Heister K, Zharnikov M, Grunze M, Johansson L., 2001

Grein F., 2002

Seybold P, Bertrand J., 1993

Chesneau F, Hamoudi H, Schüpbach B, Terfort A, Zharnikov M., 2011

Zenasni O, Jamison A, Lee T., 2013
Direct probing molecular twist and tilt in aromatic self-assembled monolayers.
Ballav N, Schupbach B, Dethloff O, Feulner P, Terfort A, Zharnikov M., J. Am. Chem. Soc. 129(50), 2007
PMID: 18041835
A divergent synthesis of oligoarylalkanethiols with Lewis-basic N-donor termini.
Schupbach B, Terfort A., Org. Biomol. Chem. 8(15), 2010
PMID: 20532389

Bjarnason E, Ómarsson B, Engmann S, Ómarsson F, Ingólfsson O., 2014

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29259871
PubMed | Europe PMC

Suchen in

Google Scholar