Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas

Aeschlimann M, Brixner T, Cinchetti M, Frisch B, Hecht B, Hensen M, Huber B, Kramer C, Krauss E, Loeber TH, Pfeiffer W, et al. (2017)
LIGHT-SCIENCE & APPLICATIONS 6(11): e17111.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Aeschlimann, Martin; Brixner, Tobias; Cinchetti, Mirko; Frisch, Benjamin; Hecht, Bert; Hensen, Matthias; Huber, Bernhard; Kramer, Christian; Krauss, Enno; Loeber, Thomas H.; Pfeiffer, WalterUniBi; Piecuch, Martin
Alle
Abstract / Bemerkung
Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis(1), energy-transfer-based microspectroscopies(2), nanoscale quantum entanglement(3) and photonic-mode hybridization(4). Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized(5) plasmonic modes. Analogous to the Tavis-Cummings model, two whispering-gallery-mode antennas(6) placed in the foci of an elliptical plasmonic cavity(7) fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.
Erscheinungsjahr
2017
Zeitschriftentitel
LIGHT-SCIENCE & APPLICATIONS
Band
6
Ausgabe
11
Art.-Nr.
e17111
ISSN
2047-7538
Page URI
https://pub.uni-bielefeld.de/record/2916117

Zitieren

Aeschlimann M, Brixner T, Cinchetti M, et al. Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. LIGHT-SCIENCE & APPLICATIONS. 2017;6(11): e17111.
Aeschlimann, M., Brixner, T., Cinchetti, M., Frisch, B., Hecht, B., Hensen, M., Huber, B., et al. (2017). Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. LIGHT-SCIENCE & APPLICATIONS, 6(11), e17111. doi:10.1038/lsa.2017.111
Aeschlimann, Martin, Brixner, Tobias, Cinchetti, Mirko, Frisch, Benjamin, Hecht, Bert, Hensen, Matthias, Huber, Bernhard, et al. 2017. “Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas”. LIGHT-SCIENCE & APPLICATIONS 6 (11): e17111.
Aeschlimann, M., Brixner, T., Cinchetti, M., Frisch, B., Hecht, B., Hensen, M., Huber, B., Kramer, C., Krauss, E., Loeber, T. H., et al. (2017). Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. LIGHT-SCIENCE & APPLICATIONS 6:e17111.
Aeschlimann, M., et al., 2017. Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. LIGHT-SCIENCE & APPLICATIONS, 6(11): e17111.
M. Aeschlimann, et al., “Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas”, LIGHT-SCIENCE & APPLICATIONS, vol. 6, 2017, : e17111.
Aeschlimann, M., Brixner, T., Cinchetti, M., Frisch, B., Hecht, B., Hensen, M., Huber, B., Kramer, C., Krauss, E., Loeber, T.H., Pfeiffer, W., Piecuch, M., Thielen, P.: Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas. LIGHT-SCIENCE & APPLICATIONS. 6, : e17111 (2017).
Aeschlimann, Martin, Brixner, Tobias, Cinchetti, Mirko, Frisch, Benjamin, Hecht, Bert, Hensen, Matthias, Huber, Bernhard, Kramer, Christian, Krauss, Enno, Loeber, Thomas H., Pfeiffer, Walter, Piecuch, Martin, and Thielen, Philip. “Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas”. LIGHT-SCIENCE & APPLICATIONS 6.11 (2017): e17111.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

30 References

Daten bereitgestellt von Europe PubMed Central.

Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature.
Collini E, Wong CY, Wilk KE, Curmi PM, Brumer P, Scholes GD., Nature 463(7281), 2010
PMID: 20130647
FRET imaging.
Jares-Erijman EA, Jovin TM., Nat. Biotechnol. 21(11), 2003
PMID: 14595367
Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.
Gonzalez-Tudela A, Martin-Cano D, Moreno E, Martin-Moreno L, Tejedor C, Garcia-Vidal FJ., Phys. Rev. Lett. 106(2), 2011
PMID: 21405211
Coherent two-dimensional nanoscopy.
Aeschlimann M, Brixner T, Fischer A, Kramer C, Melchior P, Pfeiffer W, Schneider C, Struber C, Tuchscherer P, Voronine DV., Science 333(6050), 2011
PMID: 21835982
Coupling Emitters and Silver Nanowires to Achieve Long-Range Plasmon-Mediated Fluorescence Energy Transfer.
de Torres J, Ferrand P, Colas des Francs G, Wenger J., ACS Nano 10(4), 2016
PMID: 27019008
Plasmonic whispering gallery cavities as optical nanoantennas.
Vesseur EJ, Polman A., Nano Lett. 11(12), 2011
PMID: 22129451
The planar parabolic optical antenna.
Schoen DT, Coenen T, Garcia de Abajo FJ, Brongersma ML, Polman A., Nano Lett. 13(1), 2012
PMID: 23194111
Applied physics. The case for plasmonics.
Brongersma ML, Shalaev VM., Science 328(5977), 2010
PMID: 20413483
Plasmonics: the next chip-scale technology
AUTHOR UNKNOWN, 2006
Plasmonics for extreme light concentration and manipulation.
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML., Nat Mater 9(3), 2010
PMID: 20168343
Plasmonics beyond the diffraction limit
AUTHOR UNKNOWN, 2010
Channel plasmon subwavelength waveguide components including interferometers and ring resonators.
Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW., Nature 440(7083), 2006
PMID: 16554814
Resonance energy transfer and superradiance mediated by plasmonic nanowaveguides.
Martin-Cano D, Martin-Moreno L, Garcia-Vidal FJ, Moreno E., Nano Lett. 10(8), 2010
PMID: 20698627
Coherent control of plasmon propagation in a nanocircuit
AUTHOR UNKNOWN, 2014
Generation and controlled routing of single plasmons on a chip.
Kumar S, Kristiansen NI, Huck A, Andersen UL., Nano Lett. 14(2), 2014
PMID: 24471714
Single-molecule strong coupling at room temperature in plasmonic nanocavities.
Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ., Nature 535(7610), 2016
PMID: 27296227
Modal decomposition of surface--plasmon whispering gallery resonators.
Vesseur EJ, Garcia de Abajo FJ, Polman A., Nano Lett. 9(9), 2009
PMID: 19653636
Intermolecular resonance energy transfer in the presence of a dielectric cylinder
AUTHOR UNKNOWN, 2009

AUTHOR UNKNOWN, 2006
Strong coupling between surface plasmon polaritons and emitters: a review.
Torma P, Barnes WL., Rep Prog Phys 78(1), 2014
PMID: 25536670
Exact solution for an N-molecule radiation-field Hamiltonian
AUTHOR UNKNOWN, 1968
Unusual resonators: plasmonics, metamaterials, and random media
AUTHOR UNKNOWN, 2008
Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry.
Huang JS, Callegari V, Geisler P, Bruning C, Kern J, Prangsma JC, Wu X, Feichtner T, Ziegler J, Weinmann P, Kamp M, Forchel A, Biagioni P, Sennhauser U, Hecht B., Nat Commun 1(), 2010
PMID: 21267000
Single-crystalline gold microplates grown on substrates by solution-phase synthesis
AUTHOR UNKNOWN, 2015
Time-resolved two photon photoemission electron microscopy
AUTHOR UNKNOWN, 2002
Weak and strong coupling regimes in plasmonic QED
AUTHOR UNKNOWN, 2013
Optical constants of the noble metals
AUTHOR UNKNOWN, 1972
Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing.
Jiao L, Fan B, Xian X, Wu Z, Zhang J, Liu Z., J. Am. Chem. Soc. 130(38), 2008
PMID: 18763767
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 30167218
PubMed | Europe PMC

Suchen in

Google Scholar