In situ XAS study of CoBi modified hematite photoanodes

Xi L, Schwanke C, Zhou D, Drevon D, van de Krol R, Aziz-Lange K (2017)
DALTON TRANSACTIONS 46(45): 15719-15726.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Xi, Lifei; Schwanke, Christoph; Zhou, Dong; Drevon, Dorian; van de Krol, Roel; Aziz-Lange, KathrinUniBi
Abstract / Bemerkung
Solar water splitting is a potentially scalable method to store solar energy in the form of renewable hydrogen gas. In this study, we demonstrate that the photoelectrochemical (PEC) performance of hematite photoanodes can be improved by modification with the oxygen evolution catalyst CoBi. The current density at 1.23 V of the pristine hematite under one sun is 0.88 mA cm(-2) and it increases to 1.12 mA cm(-2) after CoBi modification (similar to 27% improvement). The presence of a CoBi cocatalayst layer is proposed to improve the oxygen evolution reaction (OER) kinetics and also to prevent electron-hole recombination at the surface via passivating surface defects as well as suppressing the tunneling of electrons from the hematite core, thus improving the photocurrents and resulting in a negative shift of photocurrent onset potentials. These effects of CoBi modification are supported by experimental data obtained by performing electrochemical impedance spectroscopy (EIS), PEC and incident photon-to-current efficiency (IPCE) measurements. To investigate the electronic structure of the CoBi cocatalyst deposited on hematite, XPS and in situ X-ray absorption spectroscopy (XAS) are employed. Co K-edge spectra at different potentials and light conditions are recorded. This makes the present work different from most of the previous studies. Using a quantitative analysis method, information on the mean oxidation state of Co in the CoBi film under applied potential and illumination is revealed. We also compare different methods for determining the oxidation state from the edge position and find that the integral method and half height methods are most suitable. In summary, the present work underlines the improvement of the semi-conductor/cocatalyst interface of oxygen evolving photoanodes and strengthens the importance of in situ XAS spectroscopy when studying catalysts. This study is the first report so far combining the studies of the PEC performance of a CoBi modified hematite nanorod array photoanode and in situ XAS at the Co K-edge.
Erscheinungsjahr
2017
Zeitschriftentitel
DALTON TRANSACTIONS
Band
46
Ausgabe
45
Seite(n)
15719-15726
ISSN
1477-9226
eISSN
1477-9234
Page URI
https://pub.uni-bielefeld.de/record/2916107

Zitieren

Xi L, Schwanke C, Zhou D, Drevon D, van de Krol R, Aziz-Lange K. In situ XAS study of CoBi modified hematite photoanodes. DALTON TRANSACTIONS. 2017;46(45):15719-15726.
Xi, L., Schwanke, C., Zhou, D., Drevon, D., van de Krol, R., & Aziz-Lange, K. (2017). In situ XAS study of CoBi modified hematite photoanodes. DALTON TRANSACTIONS, 46(45), 15719-15726. doi:10.1039/c7dt02647a
Xi, L., Schwanke, C., Zhou, D., Drevon, D., van de Krol, R., and Aziz-Lange, K. (2017). In situ XAS study of CoBi modified hematite photoanodes. DALTON TRANSACTIONS 46, 15719-15726.
Xi, L., et al., 2017. In situ XAS study of CoBi modified hematite photoanodes. DALTON TRANSACTIONS, 46(45), p 15719-15726.
L. Xi, et al., “In situ XAS study of CoBi modified hematite photoanodes”, DALTON TRANSACTIONS, vol. 46, 2017, pp. 15719-15726.
Xi, L., Schwanke, C., Zhou, D., Drevon, D., van de Krol, R., Aziz-Lange, K.: In situ XAS study of CoBi modified hematite photoanodes. DALTON TRANSACTIONS. 46, 15719-15726 (2017).
Xi, Lifei, Schwanke, Christoph, Zhou, Dong, Drevon, Dorian, van de Krol, Roel, and Aziz-Lange, Kathrin. “In situ XAS study of CoBi modified hematite photoanodes”. DALTON TRANSACTIONS 46.45 (2017): 15719-15726.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

38 References

Daten bereitgestellt von Europe PubMed Central.

Solar water splitting cells.
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS., Chem. Rev. 110(11), 2010
PMID: 21062097

Yang, Acc. Chem. Res. 46(), 2013
Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
Sivula K, Le Formal F, Gratzel M., ChemSusChem 4(4), 2011
PMID: 21416621

Murphy, Int. J. Hydrogen Energy 31(), 2006

Le, Chem. Sci. 2(), 2011
Sn-doped hematite nanostructures for photoelectrochemical water splitting.
Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y., Nano Lett. 11(5), 2011
PMID: 21476581
Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.
Qiu Y, Leung SF, Zhang Q, Hua B, Lin Q, Wei Z, Tsui KH, Zhang Y, Yang S, Fan Z., Nano Lett. 14(4), 2014
PMID: 24601797
Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation.
Wang X, Peng KQ, Hu Y, Zhang FQ, Hu B, Li L, Wang M, Meng XM, Lee ST., Nano Lett. 14(1), 2013
PMID: 24341833
Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting.
Barroso M, Mesa CA, Pendlebury SR, Cowan AJ, Hisatomi T, Sivula K, Gratzel M, Klug DR, Durrant JR., Proc. Natl. Acad. Sci. U.S.A. 109(39), 2012
PMID: 22802673

Zhong, Energy Environ. Sci. 4(), 2011

Carroll, J. Mater. Chem. A 4(), 2016
Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation.
Hong YR, Liu Z, Al-Bukhari SF, Lee CJ, Yung DL, Chi D, Hor TS., Chem. Commun. (Camb.) 47(38), 2011
PMID: 21881644

Wang, J. Phys. Chem. C 119(), 2015

Tilley, Angew. Chem., Int. Ed. 122(), 2010

Chen, Electrochem. Commun. 27(), 2013

Tamirat, Nanoscale Horiz. 1(), 2016
Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting.
Thimsen E, Le Formal F, Gratzel M, Warren SC., Nano Lett. 11(1), 2010
PMID: 21138281

Xi, J. Phys. Chem. C 116(), 2012
Surface treatment of hematite photoanodes with zinc acetate for water oxidation.
Xi L, Bassi PS, Chiam SY, Mak WF, Tran PD, Barber J, Chye Loo JS, Wong LH., Nanoscale 4(15), 2012
PMID: 22688799

Xi, Chem. Sci. 4(), 2013
Intermediate-range structure of self-assembled cobalt-based oxygen-evolving catalyst.
Farrow CL, Bediako DK, Surendranath Y, Nocera DG, Billinge SJ., J. Am. Chem. Soc. 135(17), 2013
PMID: 23547707

Kurosu, Electrochemistry 84(), 2016
X-ray absorption spectroscopy.
Yano J, Yachandra VK., Photosyn. Res. 102(2-3), 2009
PMID: 19653117

Esswein, Energy Environ. Sci. 4(), 2011
Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts.
Surendranath Y, Dinca M, Nocera DG., J. Am. Chem. Soc. 131(7), 2009
PMID: 19183057
Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.
Doyle RL, Godwin IJ, Brandon MP, Lyons ME., Phys Chem Chem Phys 15(33), 2013
PMID: 23652494
Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: hematite.
Chernyshova IV, Ponnurangam S, Somasundaran P., Phys Chem Chem Phys 15(18), 2013
PMID: 23552484

Ivasishin, Key Eng. Mater. 520(), 2012

Qin, Catalysts 5(), 2015

Koyama, Phys. Rev. B: Condens. Matter Mater. Phys. 85(), 2012
Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.
Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG., J. Am. Chem. Soc. 132(39), 2010
PMID: 20839862
Cobalt-oxo core of a water-oxidizing catalyst film.
Risch M, Khare V, Zaharieva I, Gerencser L, Chernev P, Dau H., J. Am. Chem. Soc. 131(20), 2009
PMID: 19419168

Risch, Int. J. Hydrogen Energy 37(), 2012

Risch, Energy Environ. Sci. 8(), 2015

Xi, J. Phys. Chem. C 121(), 2017

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29095446
PubMed | Europe PMC

Suchen in

Google Scholar