Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults

Schubert JTW, Badde S, Röder B, Heed T (2017)
PLOS ONE 12(12): e0189067.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 5.05 MB
Autor*in
Schubert, Jonathan T. W.; Badde, Stephanie; Röder, Brigitte; Heed, TobiasUniBi
Abstract / Bemerkung
Task demands modulate tactile localization in sighted humans, presumably through weight adjustments in the spatial integration of anatomical, skin-based, and external, posture-based information. In contrast, previous studies have suggested that congenitally blind humans, by default, refrain from automatic spatial integration and localize touch using only skin-based information. Here, sighted and congenitally blind participants localized tactile targets on the palm or back of one hand, while ignoring simultaneous tactile distractors at congruent or incongruent locations on the other hand. We probed the interplay of anatomical and external location codes for spatial congruency effects by varying hand posture: the palms either both faced down, or one faced down and one up. In the latter posture, externally congruent target and distractor locations were anatomically incongruent and vice versa. Target locations had to be reported either anatomically (“palm” or “back” of the hand), or externally (“up” or “down” in space). Under anatomical instructions, performance was more accurate for anatomically congruent than incongruent target-distractor pairs. In contrast, under external instructions, performance was more accurate for externally congruent than incongruent pairs. These modulations were evident in sighted and blind individuals. Notably, distractor effects were overall far smaller in blind than in sighted participants, despite comparable target-distractor identification performance. Thus, the absence of developmental vision seems to be associated with an increased ability to focus tactile attention towards a non-spatially defined target. Nevertheless, that blind individuals exhibited effects of hand posture and task instructions in their congruency effects suggests that, like the sighted, they automatically integrate anatomical and external information during tactile localization. Moreover, spatial integration in tactile processing is, thus, flexibly adapted by top-down information—here, task instruction—even in the absence of developmental vision.
Erscheinungsjahr
2017
Zeitschriftentitel
PLOS ONE
Band
12
Ausgabe
12
Art.-Nr.
e0189067
ISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2915823

Zitieren

Schubert JTW, Badde S, Röder B, Heed T. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE. 2017;12(12): e0189067.
Schubert, J. T. W., Badde, S., Röder, B., & Heed, T. (2017). Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE, 12(12), e0189067. doi:10.1371/journal.pone.0189067
Schubert, J. T. W., Badde, S., Röder, B., and Heed, T. (2017). Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE 12:e0189067.
Schubert, J.T.W., et al., 2017. Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE, 12(12): e0189067.
J.T.W. Schubert, et al., “Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults”, PLOS ONE, vol. 12, 2017, : e0189067.
Schubert, J.T.W., Badde, S., Röder, B., Heed, T.: Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults. PLOS ONE. 12, : e0189067 (2017).
Schubert, Jonathan T. W., Badde, Stephanie, Röder, Brigitte, and Heed, Tobias. “Task demands affect spatial reference frame weighting during tactile localization in sighted and congenitally blind adults”. PLOS ONE 12.12 (2017): e0189067.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:48:53Z
MD5 Prüfsumme
c2b8bbbdca8de9c93e56d69ce21e0b18

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Alpha-band oscillations reflect external spatial coding for tactile stimuli in sighted, but not in congenitally blind humans.
Schubert JTW, Buchholz VN, Föcker J, Engel AK, Röder B, Heed T., Sci Rep 9(1), 2019
PMID: 31239467

62 References

Daten bereitgestellt von Europe PubMed Central.

Multisensory integration: psychophysics, neurophysiology, and computation.
Angelaki DE, Gu Y, DeAngelis GC., Curr. Opin. Neurobiol. 19(4), 2009
PMID: 19616425
A computational perspective on the neural basis of multisensory spatial representations.
Pouget A, Deneve S, Duhamel JR., Nat. Rev. Neurosci. 3(9), 2002
PMID: 12209122
Flexible strategies for sensory integration during motor planning.
Sober SJ, Sabes PN., Nat. Neurosci. 8(4), 2005
PMID: 15793578

AUTHOR UNKNOWN, 2011
Flexibly weighted integration of tactile reference frames.
Badde S, Roder B, Heed T., Neuropsychologia 70(), 2014
PMID: 25447059
Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
AUTHOR UNKNOWN, 1937
Multisensory processing in spatial orientation: an inverse probabilistic approach.
Clemens IA, De Vrijer M, Selen LP, Van Gisbergen JA, Medendorp WP., J. Neurosci. 31(14), 2011
PMID: 21471371
Cross-modal links in spatial attention.
Driver J, Spence C., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353(1373), 1998
PMID: 9770225
Tactile remapping: from coordinate transformation to integration in sensorimotor processing.
Heed T, Buchholz VN, Engel AK, Roder B., Trends Cogn. Sci. (Regul. Ed.) 19(5), 2015
PMID: 25843541
Multisensory integration and the body schema: close to hand and within reach.
Maravita A, Spence C, Driver J., Curr. Biol. 13(13), 2003
PMID: 12842033
Disentangling the External Reference Frames Relevant to Tactile Localization.
Heed T, Backhaus J, Roder B, Badde S., PLoS ONE 11(7), 2016
PMID: 27391805
Tactile remapping beyond space.
Azanon E, Camacho K, Soto-Faraco S., Eur. J. Neurosci. 31(10), 2010
PMID: 20584190
Confusing the mind by crossing the hands
AUTHOR UNKNOWN, 2002
Reversal of subjective temporal order due to arm crossing.
Yamamoto S, Kitazawa S., Nat. Neurosci. 4(7), 2001
PMID: 11426234
Movement Induces the Use of External Spatial Coordinates for Tactile Localization in Congenitally Blind Humans
AUTHOR UNKNOWN, 2015
Predicting future sensorimotor states influences current temporal decision making.
Hermosillo R, Ritterband-Rosenbaum A, van Donkelaar P., J. Neurosci. 31(27), 2011
PMID: 21734293
Gaze-dependent spatial updating of tactile targets in a localization task.
Mueller S, Fiehler K., Front Psychol 5(), 2014
PMID: 24575060
Reference frames for coding touch location depend on the task.
Pritchett LM, Carnevale MJ, Harris LR., Exp Brain Res 222(4), 2012
PMID: 22941315
Dynamic tuning of tactile localization to body posture.
Azanon E, Stenner MP, Cardini F, Haggard P., Curr. Biol. 25(4), 2015
PMID: 25660544
Early visual deprivation alters multisensory processing in peripersonal space.
Collignon O, Charbonneau G, Lassonde M, Lepore F., Neuropsychologia 47(14), 2009
PMID: 19666035
Early vision impairs tactile perception in the blind.
Roder B, Rosler F, Spence C., Curr. Biol. 14(2), 2004
PMID: 14738733
How visual experience impacts the internal and external spatial mapping of sensorimotor functions.
Crollen V, Albouy G, Lepore F, Collignon O., Sci Rep 7(1), 2017
PMID: 28432316
Space and time in the sighted and blind.
Bottini R, Crepaldi D, Casasanto D, Crollen V, Collignon O., Cognition 141(), 2015
PMID: 25935747
Response requirements modulate tactile spatial congruency effects.
Gallace A, Soto-Faraco S, Dalton P, Kreukniet B, Spence C., Exp Brain Res 191(2), 2008
PMID: 18709500

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2009
Generalized linear mixed models: a practical guide for ecology and evolution.
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS., Trends Ecol. Evol. (Amst.) 24(3), 2009
PMID: 19185386
Random effects structure for confirmatory hypothesis testing: Keep it maximal.
Barr DJ, Levy R, Scheepers C, Tily HJ., J Mem Lang 68(3), 2013
PMID: 24403724

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 2000
A Simple Sequentially Rejective Multiple Test Procedure
AUTHOR UNKNOWN, 1979
Parietal oscillations code nonvisual reach targets relative to gaze and body.
Buchholz VN, Jensen O, Medendorp WP., J. Neurosci. 33(8), 2013
PMID: 23426676
Multiple reference frames in cortical oscillatory activity during tactile remapping for saccades.
Buchholz VN, Jensen O, Medendorp WP., J. Neurosci. 31(46), 2011
PMID: 22090512
Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention.
Schubert JT, Buchholz VN, Focker J, Engel AK, Roder B, Heed T., Neuroimage 117(), 2015
PMID: 26032885
Improved selective and divided spatial attention in early blind subjects.
Collignon O, Renier L, Bruyer R, Tranduy D, Veraart C., Brain Res. 1075(1), 2006
PMID: 16460716
Improved auditory spatial tuning in blind humans.
Roder B, Teder-Salejarvi W, Sterr A, Rosler F, Hillyard SA, Neville HJ., Nature 400(6740), 1999
PMID: 10408442
Altered tactile spatial attention in the early blind.
Forster B, Eardley AF, Eimer M., Brain Res. 1131(1), 2006
PMID: 17173872
Noninformative vision improves haptic spatial perception.
Newport R, Rabb B, Jackson SR., Curr. Biol. 12(19), 2002
PMID: 12361568
Alleviating the 'crossed-hands' deficit by seeing uncrossed rubber hands.
Azanon E, Soto-Faraco S., Exp Brain Res 182(4), 2007
PMID: 17643239
Response demands and blindfolding in the crossed-hands deficit: an exploration of reference frame conflict
AUTHOR UNKNOWN, 2013
Visual capture of touch: out-of-the-body experiences with rubber gloves.
Pavani F, Spence C, Driver J., Psychol Sci 11(5), 2000
PMID: 11228904

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29228023
PubMed | Europe PMC

Suchen in

Google Scholar