Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes

Bräutigam A, Shrestha RP, Whitten D, Wilkerson CG, Carr KM, Froehlich JE, Weber APM (2008)
Journal of Biotechnology 136(1-2): 44-53.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.18 MB
Autor*in
Bräutigam, AndreaUniBi ; Shrestha, Roshan P.; Whitten, Doug; Wilkerson, Curtis G.; Carr, Kevin M.; Froehlich, John E.; Weber, Andreas P. M.
Abstract / Bemerkung
Proteomics is a valuable tool for establishing and comparing the protein content of defined tissues, cell types, or subcellular structures. Its use in non-model species is currently limited because the identification of peptides Critically depends on sequence databases. In this study, we explored the potential of a preliminary cDNA database for the non-model species Pisum sativum created by a small number of massively parallel pyrosequencing (MPSS) runs for its use in proteomics and compared it to comprehensive cDNA databases from Medicago truncatula and Arabidopsis thaliana created by Sanger sequencing. Each database was used to identify Proteins from a pea leaf chloroplast envelope preparation. It is shown that the pea database identified more proteins with higher accuracy, although the sequence quality was low and the sequence contigs were short compared to databases from model species. Although the number of identified proteins in non-species-specific databases could potentially be increased by lowering the threshold for Successful protein identifications, this strategy markedly increases the number of wrongly identified proteins. The identification rate with non-species-specific databases correlated with spectral abundance but not with the predicted membrane helix content, and Strong conservation is necessary but not sufficient for protein identification with a non-species-specific database. It is concluded that massively Parallel sequencing of cDNAs substantially increases the power Of proteomics in non-model species. (C) 2008 Elsevier B.V. All rights reserved.
Stichworte
pyrosequencing; massively parallel sequencing; expressed sequence tags; transcript profiling; proteomics; Pisum sativuln
Erscheinungsjahr
2008
Zeitschriftentitel
Journal of Biotechnology
Band
136
Ausgabe
1-2
Seite(n)
44-53
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2915169

Zitieren

Bräutigam A, Shrestha RP, Whitten D, et al. Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology. 2008;136(1-2):44-53.
Bräutigam, A., Shrestha, R. P., Whitten, D., Wilkerson, C. G., Carr, K. M., Froehlich, J. E., & Weber, A. P. M. (2008). Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology, 136(1-2), 44-53. doi:10.1016/j.jbiotec.2008.02.007
Bräutigam, Andrea, Shrestha, Roshan P., Whitten, Doug, Wilkerson, Curtis G., Carr, Kevin M., Froehlich, John E., and Weber, Andreas P. M. 2008. “Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes”. Journal of Biotechnology 136 (1-2): 44-53.
Bräutigam, A., Shrestha, R. P., Whitten, D., Wilkerson, C. G., Carr, K. M., Froehlich, J. E., and Weber, A. P. M. (2008). Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology 136, 44-53.
Bräutigam, A., et al., 2008. Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology, 136(1-2), p 44-53.
A. Bräutigam, et al., “Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes”, Journal of Biotechnology, vol. 136, 2008, pp. 44-53.
Bräutigam, A., Shrestha, R.P., Whitten, D., Wilkerson, C.G., Carr, K.M., Froehlich, J.E., Weber, A.P.M.: Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes. Journal of Biotechnology. 136, 44-53 (2008).
Bräutigam, Andrea, Shrestha, Roshan P., Whitten, Doug, Wilkerson, Curtis G., Carr, Kevin M., Froehlich, John E., and Weber, Andreas P. M. “Low-coverage massively parallel pyrosequencing of cDNAs enables proteomics in non-model species: Comparison of a species-specific database generated by pyrosequencing with databases from related species for proteome analysis of pea chloroplast envelopes”. Journal of Biotechnology 136.1-2 (2008): 44-53.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
b898e5a2737275b3a338e0d1c7d14899


43 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The Secretome and N-Glycosylation Profiles of the Charophycean Green Alga, Penium margaritaceum, Resemble Those of Embryophytes.
Ruiz-May E, Sørensen I, Fei Z, Zhang S, Domozych DS, Rose JKC., Proteomes 6(2), 2018
PMID: 29561781
Biochemical and Transcriptional Regulation of Membrane Lipid Metabolism in Maize Leaves under Low Temperature.
Gu Y, He L, Zhao C, Wang F, Yan B, Gao Y, Li Z, Yang K, Xu J., Front Plant Sci 8(), 2017
PMID: 29250095
The membrane proteome of male gametophyte in Solanum lycopersicum.
Paul P, Chaturvedi P, Selymesi M, Ghatak A, Mesihovic A, Scharf KD, Weckwerth W, Simm S, Schleiff E., J Proteomics 131(), 2016
PMID: 26455813
Eukaryotic Hsp70 chaperones in the intermembrane space of chloroplasts.
Bionda T, Gross LE, Becker T, Papasotiriou DG, Leisegang MS, Karas M, Schleiff E., Planta 243(3), 2016
PMID: 26669598
Synergism of proteomics and mRNA sequencing for enzyme discovery.
Sturmberger L, Wallace PW, Glieder A, Birner-Gruenberger R., J Biotechnol 235(), 2016
PMID: 26707808
An evaluation of coral lophelia pertusa mucus as an analytical matrix for environmental monitoring: A preliminary proteomic study.
Provan F, Nilsen MM, Larssen E, Uleberg KE, Sydnes MO, Lyng E, Øysæd KB, Baussant T., J Toxicol Environ Health A 79(13-15), 2016
PMID: 27484144
T-DNA insertion in aquaporin gene AtPIP1;2 generates transcription profiles reminiscent of a low CO2 response.
Boudichevskaia A, Heckwolf M, Kaldenhoff R., Plant Cell Environ 38(11), 2015
PMID: 25850563
Discovering New Biology through Sequencing of RNA.
Weber AP., Plant Physiol 169(3), 2015
PMID: 26353759
Microbiology and proteomics, getting the best of both worlds!
Armengaud J., Environ Microbiol 15(1), 2013
PMID: 22708953
Proteomics of nonmodel plant species.
Champagne A, Boutry M., Proteomics 13(3-4), 2013
PMID: 23125178
A decade of plant proteomics and mass spectrometry: translation of technical advancements to food security and safety issues.
Agrawal GK, Sarkar A, Righetti PG, Pedreschi R, Carpentier S, Wang T, Barkla BJ, Kohli A, Ndimba BK, Bykova NV, Rampitsch C, Zolla L, Rafudeen MS, Cramer R, Bindschedler LV, Tsakirpaloglou N, Ndimba RJ, Farrant JM, Renaut J, Job D, Kikuchi S, Rakwal R., Mass Spectrom Rev 32(5), 2013
PMID: 23315723
Defining the core proteome of the chloroplast envelope membranes.
Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B, Schorge T, Karas M, Mirus O, Sommer MS, Schleiff E., Front Plant Sci 4(), 2013
PMID: 23390424
Shotgun proteomics as a viable approach for biological discovery in the Pacific oyster.
Timmins-Schiffman E, Nunn BL, Goodlett DR, Roberts SB., Conserv Physiol 1(1), 2013
PMID: 27293593
The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination.
Pudelski B, Schock A, Hoth S, Radchuk R, Weber H, Hofmann J, Sonnewald U, Soll J, Philippar K., J Exp Bot 63(5), 2012
PMID: 22155670
Cross-talk between calcium signalling and protein phosphorylation at the thylakoid.
Stael S, Rocha AG, Wimberger T, Anrather D, Vothknecht UC, Teige M., J Exp Bot 63(4), 2012
PMID: 22197893
Dynamic Remodeling of the Plastid Envelope Membranes - A Tool for Chloroplast Envelope in vivo Localizations.
Breuers FK, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber AP., Front Plant Sci 3(), 2012
PMID: 22645566
Translational plant proteomics: a perspective.
Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R., J Proteomics 75(15), 2012
PMID: 22516432
The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms.
Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thøgersen IB, Bräutigam A, Thomsen LR, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D, Schultz J, Karring H, Weber A, Højrup P, Hedrich R, Enghild JJ., Mol Cell Proteomics 11(11), 2012
PMID: 22891002
RNA-Seq Assembly - Are We There Yet?
Schliesky S, Gowik U, Weber AP, Bräutigam A., Front Plant Sci 3(), 2012
PMID: 23056003
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol 155(1), 2011
PMID: 20543093
Plant organelle proteomics: collaborating for optimal cell function.
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R., Mass Spectrom Rev 30(5), 2011
PMID: 21038434
Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism.
Tarantino D, Morandini P, Ramirez L, Soave C, Murgia I., Plant Physiol Biochem 49(5), 2011
PMID: 21371898
Mining the soluble chloroplast proteome by affinity chromatography.
Bayer RG, Stael S, Csaszar E, Teige M., Proteomics 11(7), 2011
PMID: 21365755
Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.).
Reiland S, Grossmann J, Baerenfaller K, Gehrig P, Nunes-Nesi A, Fernie AR, Gruissem W, Baginsky S., Proteomics 11(9), 2011
PMID: 21433289
Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing.
Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP., BMC Genomics 12(), 2011
PMID: 21569327
A J-like protein influences fatty acid composition of chloroplast lipids in Arabidopsis.
Ajjawi I, Coku A, Froehlich JE, Yang Y, Osteryoung KW, Benning C, Last RL., PLoS One 6(10), 2011
PMID: 22028775
EST analysis reveals putative genes involved in glycyrrhizin biosynthesis.
Li Y, Luo HM, Sun C, Song JY, Sun YZ, Wu Q, Wang N, Yao H, Steinmetz A, Chen SL., BMC Genomics 11(), 2010
PMID: 20423525
Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics.
Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, Wilkerson C, Last RL., Plant Physiol 153(3), 2010
PMID: 20431087
The plant PRAT proteins - preprotein and amino acid transport in mitochondria and chloroplasts.
Pudelski B, Kraus S, Soll J, Philippar K., Plant Biol (Stuttg) 12 Suppl 1(), 2010
PMID: 20712620
Characterization of the rainbow trout transcriptome using Sanger and 454-pyrosequencing approaches.
Salem M, Rexroad CE, Wang J, Thorgaard GH, Yao J., BMC Genomics 11(), 2010
PMID: 20942956
Applications of new sequencing technologies for transcriptome analysis.
Morozova O, Hirst M, Marra MA., Annu Rev Genomics Hum Genet 10(), 2009
PMID: 19715439
Interaction of actin and the chloroplast protein import apparatus.
Jouhet J, Gray JC., J Biol Chem 284(28), 2009
PMID: 19435889
Shedding light on an extremophile lifestyle through transcriptomics.
Dassanayake M, Haas JS, Bohnert HJ, Cheeseman JM., New Phytol 183(3), 2009
PMID: 19549131
Post-genomics studies of developmental processes in legume seeds.
Thompson R, Burstin J, Gallardo K., Plant Physiol 151(3), 2009
PMID: 19675147

83 References

Daten bereitgestellt von Europe PubMed Central.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Arabidopsis thaliana proteomics: from proteome to genome.
Baginsky S, Gruissem W., J. Exp. Bot. 57(7), 2006
PMID: 16551684
Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts.
Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rebeille F, Ravanel S., J. Biol. Chem. 280(41), 2005
PMID: 16055441
Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development.
Bouvier F, Linka N, Isner JC, Mutterer J, Weber AP, Camara B., Plant Cell 18(11), 2006
PMID: 17098813
Purification of catalase from pea leaf peroxisomes: identification of five different isoforms.
Corpas FJ, Palma JM, Sandalio LM, Lopez-Huertas E, Romero-Puertas MC, Barroso JB, Del Rio LA., Free Radic. Res. 31 Suppl(), 1999
PMID: 10694065
TANDEM: matching proteins with tandem mass spectra.
Craig R, Beavis RC., Bioinformatics 20(9), 2004
PMID: 14976030
Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana.
Duchene AM, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Marechal-Drouard L, Small ID., Proc. Natl. Acad. Sci. U.S.A. 102(45), 2005
PMID: 16251277
Mapping the Arabidopsis organelle proteome.
Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS., Proc. Natl. Acad. Sci. U.S.A. 103(17), 2006
PMID: 16618929

AUTHOR UNKNOWN, 0
PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport.
Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K., Plant Cell 19(3), 2007
PMID: 17337631
Hiding behind hydrophobicity. Transmembrane segments in mass spectrometry.
Eichacker LA, Granvogl B, Mirus O, Muller BC, Miess C, Schleiff E., J. Biol. Chem. 279(49), 2004
PMID: 15452135
Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters.
Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12177442
Functional genomics of phosphate antiport systems of plastids
Flügge, Physiol. Plant 118(), 2003
Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis.
Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS., J. Proteome Res. 2(4), 2003
PMID: 12938931
Chloroplast division.
Glynn JM, Miyagishima SY, Yoder DW, Osteryoung KW, Vitha S., Traffic 8(5), 2007
PMID: 17451550
Microsynteny between pea and Medicago truncatula in the SYM2 region.
Gualtieri G, Kulikova O, Limpens E, Kim DJ, Cook DR, Bisselin T, Geurts R., Plant Mol. Biol. 50(2), 2002
PMID: 12175015
Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts.
Gutensohn M, Fan E, Frielingsdorf S, Hanner P, Hou B, Hust B, Klosgen RB., J. Plant Physiol. 163(3), 2005
PMID: 16386331
MscS-like proteins control plastid size and shape in Arabidopsis thaliana.
Haswell ES, Meyerowitz EM., Curr. Biol. 16(1), 2006
PMID: 16401419
CAP3: A DNA sequence assembly program.
Huang X, Madan A., Genome Res. 9(9), 1999
PMID: 10508846
Arabidopsis map-based cloning in the post-genome era.
Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL., Plant Physiol. 129(2), 2002
PMID: 12068090
Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant.
Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J., Proc. Natl. Acad. Sci. U.S.A. 97(14), 2000
PMID: 10869420
Organellar proteomics: chloroplasts in the spotlight.
Jarvis P., Curr. Biol. 14(8), 2004
PMID: 15084303
Comparative mapping between Medicago sativa and Pisum sativum.
Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis TH, Kiss GB., Mol. Genet. Genomics 272(3), 2004
PMID: 15340836
Isolation and characterization of chloroplast envelope membranes
Keegstra, Meth. Enzymol. 118(), 1986
Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.
Keller A, Nesvizhskii AI, Kolker E, Aebersold R., Anal. Chem. 74(20), 2002
PMID: 12403597
plprot: a comprehensive proteome database for different plastid types.
Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S., Plant Cell Physiol. 47(3), 2006
PMID: 16418230
A novel family of magnesium transport genes in Arabidopsis.
Li L, Tutone AF, Drummond RS, Gardner RC, Luan S., Plant Cell 13(12), 2001
PMID: 11752386
Genome sequencing in microfabricated high-density picolitre reactors.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM., Nature 437(7057), 2005
PMID: 16056220
Phylogenetic relationships within cation transporter families of Arabidopsis.
Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML., Plant Physiol. 126(4), 2001
PMID: 11500563
A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase.
McConn M, Hugly S, Browse J, Somerville C., Plant Physiol. 106(4), 1994
PMID: 12232435
Arabidopsis thaliana: a model plant for genome analysis.
Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M., Science 282(5389), 1998
PMID: 9784120
Isolation of intact plastids from a range of plant tissues.
Miflin BJ, Beevers H., Plant Physiol. 53(6), 1974
PMID: 16658807
Recent surprises in protein targeting to mitochondria and plastids.
Millar AH, Whelan J, Small I., Curr. Opin. Plant Biol. 9(6), 2006
PMID: 17008120
Non-canonical transit peptide for import into the chloroplast.
Miras S, Salvi D, Ferro M, Grunwald D, Garin J, Joyard J, Rolland N., J. Biol. Chem. 277(49), 2002
PMID: 12368288
Toc159- and Toc75-independent import of a transit sequence-less precursor into the inner envelope of chloroplasts.
Miras S, Salvi D, Piette L, Seigneurin-Berny D, Grunwald D, Reinbothe C, Joyard J, Reinbothe S, Rolland N., J. Biol. Chem. 282(40), 2007
PMID: 17636260
PDV1 and PDV2 mediate recruitment of the dynamin-related protein ARC5 to the plastid division site.
Miyagishima SY, Froehlich JE, Osteryoung KW., Plant Cell 18(10), 2006
PMID: 16998069
A statistical model for identifying proteins by tandem mass spectrometry.
Nesvizhskii AI, Keller A, Kolker E, Aebersold R., Anal. Chem. 75(17), 2003
PMID: 14632076
Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L.
Neuhaus HE, Thom E, Mohlmann T, Steup M, Kampfenkel K., Plant J. 11(1), 1997
PMID: 9025303
Performance evaluation of existing de novo sequencing algorithms.
Pevtsov S, Fedulova I, Mirzaei H, Buck C, Zhang X., J. Proteome Res. 5(11), 2006
PMID: 17081053
The growing family of mitochondrial carriers in Arabidopsis.
Picault N, Hodges M, Palmieri L, Palmieri F., Trends Plant Sci. 9(3), 2004
PMID: 15003237
Evidence for an ER to Golgi to chloroplast protein transport pathway.
Radhamony RN, Theg SM., Trends Cell Biol. 16(8), 2006
PMID: 16815014
Molecular physiological analysis of the two plastidic ATP/ADP transporters from Arabidopsis.
Reiser J, Linka N, Lemke L, Jeblick W, Neuhaus HE., Plant Physiol. 136(3), 2004
PMID: 15516503
The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2.
Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber AP., Plant J. 35(3), 2003
PMID: 12887583
The origin and establishment of the plastid in algae and plants.
Reyes-Prieto A, Weber AP, Bhattacharya D., Annu. Rev. Genet. 41(), 2007
PMID: 17600460
Novel tonoplast transporters identified using a proteomic approach with vacuoles isolated from cauliflower buds.
Schmidt UG, Endler A, Schelbert S, Brunner A, Schnell M, Neuhaus HE, Marty-Mazars D, Marty F, Baginsky S, Martinoia E., Plant Physiol. 145(1), 2007
PMID: 17660356
HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions.
Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J, Richaud P, Rolland N., J. Biol. Chem. 281(5), 2005
PMID: 16282320
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443
PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts.
Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M., Plant Cell 15(6), 2003
PMID: 12782727
Plant functional genomics.
Somerville C, Somerville S., Science 285(5426), 1999
PMID: 10411495
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.
Arabidopsis Genome Initiative., Nature 408(6814), 2000
PMID: 11130711
Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts.
Taira M, Valtersson U, Burkhardt B, Ludwig RA., Plant Cell 16(8), 2004
PMID: 15273293
Differential impact of environmental stresses on the pea mitochondrial proteome.
Taylor NL, Heazlewood JL, Day DA, Millar AH., Mol. Cell Proteomics 4(8), 2005
PMID: 15914488
Subcellular fractionation of plant tissues.
Tobin, Isolation of chloroplasts and mitochondria from leaves, Methods Mol. Biol. 59(), 1996
Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast.
Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G., Nat. Cell Biol. 7(12), 2005
PMID: 16284624
Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions.
von Zychlinski A, Kleffmann T, Krishnamurthy N, Sjolander K, Baginsky S, Gruissem W., Mol. Cell Proteomics 4(8), 2005
PMID: 15901827
Interaction of cytosolic and plastidic nitrogen metabolism in plants.
Weber A, Flugge UI., J. Exp. Bot. 53(370), 2002
PMID: 11912229
Using mutants to probe the in vivo function of plastid envelope membrane metabolite transporters.
Weber AP, Schneidereit J, Voll LM., J. Exp. Bot. 55(400), 2004
PMID: 15047758
Solute transporters of the plastid envelope membrane.
Weber AP, Schwacke R, Flugge UI., Annu Rev Plant Biol 56(), 2005
PMID: 15862092
Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing.
Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB., Plant Physiol. 144(1), 2007
PMID: 17351049
Evolution of the angiosperms: calibrating the family tree.
Wikstrom N, Savolainen V, Chase MW., Proc. Biol. Sci. 268(1482), 2001
PMID: 11674868
Protein profiling of plastoglobules in chloroplasts and chromoplasts.
Ytterberg, A surprising site for differential accumulation of metabolic enzymes, Plant Physiol. 140(), 2006
Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.
Yu B, Xu C, Benning C., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11960029
A greedy algorithm for aligning DNA sequences.
Zhang Z, Schwartz S, Wagner L, Miller W., J. Comput. Biol. 7(1-2), 2000
PMID: 10890397
Simple cDNA normalization using kamchatka crab duplex-specific nuclease.
Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA, Shagin DA., Nucleic Acids Res. 32(3), 2004
PMID: 14973331
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18394738
PubMed | Europe PMC

Suchen in

Google Scholar