Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes

Bräutigam A, Hofmann-Benning S, Weber APM (2008)
Plant Physiology 148(1): 568-579.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 494.52 KB
Bräutigam, AndreaUniBi ; Hofmann-Benning, Susanne; Weber, Andreas P. M.
Abstract / Bemerkung
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)- type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.
Plant Physiology
Page URI


Bräutigam A, Hofmann-Benning S, Weber APM. Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology. 2008;148(1):568-579.
Bräutigam, A., Hofmann-Benning, S., & Weber, A. P. M. (2008). Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology, 148(1), 568-579. doi:10.1104/pp.108.121012
Bräutigam, Andrea, Hofmann-Benning, Susanne, and Weber, Andreas P. M. 2008. “Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes”. Plant Physiology 148 (1): 568-579.
Bräutigam, A., Hofmann-Benning, S., and Weber, A. P. M. (2008). Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology 148, 568-579.
Bräutigam, A., Hofmann-Benning, S., & Weber, A.P.M., 2008. Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology, 148(1), p 568-579.
A. Bräutigam, S. Hofmann-Benning, and A.P.M. Weber, “Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes”, Plant Physiology, vol. 148, 2008, pp. 568-579.
Bräutigam, A., Hofmann-Benning, S., Weber, A.P.M.: Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology. 148, 568-579 (2008).
Bräutigam, Andrea, Hofmann-Benning, Susanne, and Weber, Andreas P. M. “Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes”. Plant Physiology 148.1 (2008): 568-579.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

75 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae).
Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U., J Exp Bot 68(2), 2017
PMID: 27660482
Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.
Lundquist PK, Mantegazza O, Stefanski A, Stühler K, Weber APM., Mol Plant 10(1), 2017
PMID: 27794502
Strategies and tools to improve crop productivity by targeting photosynthesis.
Nuccio ML, Potter L, Stiegelmeyer SM, Curley J, Cohn J, Wittich PE, Tan X, Davis J, Ni J, Trullinger J, Hall R, Bate NJ., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808096
C4 Photosynthesis in the Rice Paddy: Insights from the Noxious Weed Echinochloa glabrescens.
Covshoff S, Szecowka M, Hughes TE, Smith-Unna R, Kelly S, Bailey KJ, Sage TL, Pachebat JA, Leegood R, Hibberd JM., Plant Physiol 170(1), 2016
PMID: 26527656
Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber AP., Plant Physiol 170(1), 2016
PMID: 26530316
Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants.
Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP., Plant Cell 28(2), 2016
PMID: 26813621
Domestication Syndrome Is Investigated by Proteomic Analysis between Cultivated Cassava (Manihot esculenta Crantz) and Its Wild Relatives.
An F, Chen T, Stéphanie DM, Li K, Li QX, Carvalho LJ, Tomlins K, Li J, Gu B, Chen S., PLoS One 11(3), 2016
PMID: 27023871
Oep23 forms an ion channel in the chloroplast outer envelope.
Goetze TA, Patil M, Jeshen I, Bölter B, Grahl S, Soll J., BMC Plant Biol 15(), 2015
PMID: 25849634
Discovering New Biology through Sequencing of RNA.
Weber AP., Plant Physiol 169(3), 2015
PMID: 26353759
Identification of Photosynthesis-Associated C4 Candidate Genes through Comparative Leaf Gradient Transcriptome in Multiple Lineages of C3 and C4 Species.
Ding Z, Weissmann S, Wang M, Du B, Huang L, Wang L, Tu X, Zhong S, Myers C, Brutnell TP, Sun Q, Li P., PLoS One 10(10), 2015
PMID: 26465154
Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes.
Meisrimler CN, Menckhoff L, Kukavica BM, Lüthje S., Front Plant Sci 6(), 2015
PMID: 26539198
Cracking the Kranz enigma with systems biology.
Fouracre JP, Ando S, Langdale JA., J Exp Bot 65(13), 2014
PMID: 24510938
Elements required for an efficient NADP-malic enzyme type C4 photosynthesis.
Wang Y, Long SP, Zhu XG., Plant Physiol 164(4), 2014
PMID: 24521879
Identification and characterization of nuclear genes involved in photosynthesis in Populus.
Wang B, Du Q, Yang X, Zhang D., BMC Plant Biol 14(), 2014
PMID: 24673936
Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
Kromdijk J, Ubierna N, Cousins AB, Griffiths H., J Exp Bot 65(13), 2014
PMID: 24755278
Unknown components of the plastidial permeome.
Pick TR, Weber AP., Front Plant Sci 5(), 2014
PMID: 25191333
The role of membrane transport in metabolic engineering of plant primary metabolism.
Weber AP, Bräutigam A., Curr Opin Biotechnol 24(2), 2013
PMID: 23040411
Leaf rolling allows quantification of mRNA abundance in mesophyll cells of sorghum.
Covshoff S, Furbank RT, Leegood RC, Hibberd JM., J Exp Bot 64(3), 2013
PMID: 23077203
The challenges of cellular compartmentalization in plant metabolic engineering.
Heinig U, Gutensohn M, Dudareva N, Aharoni A., Curr Opin Biotechnol 24(2), 2013
PMID: 23246154
Parallel recruitment of multiple genes into c4 photosynthesis.
Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP., Genome Biol Evol 5(11), 2013
PMID: 24179135
PHA bioplastics, biochemicals, and energy from crops.
Somleva MN, Peoples OP, Snell KD., Plant Biotechnol J 11(2), 2013
PMID: 23294864
PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters.
Pick TR, Bräutigam A, Schulz MA, Obata T, Fernie AR, Weber AP., Proc Natl Acad Sci U S A 110(8), 2013
PMID: 23382251
C4 photosynthetic machinery: insights from maize chloroplast proteomics.
Zhao Q, Chen S, Dai S., Front Plant Sci 4(), 2013
PMID: 23596450
Glycoproteome of elongating cotton fiber cells.
Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, Dhandapani G, Kanakachari M, Leelavathi S, Kumar PA, Reddy VS., Mol Cell Proteomics 12(12), 2013
PMID: 24019148
Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae
Ocampo G, Koteyeva NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT., Am J Bot 100(12), 2013
PMID: IND601149010
The plastid outer envelope protein OEP16 affects metabolic fluxes during ABA-controlled seed development and germination.
Pudelski B, Schock A, Hoth S, Radchuk R, Weber H, Hofmann J, Sonnewald U, Soll J, Philippar K., J Exp Bot 63(5), 2012
PMID: 22155670
Dynamic Remodeling of the Plastid Envelope Membranes - A Tool for Chloroplast Envelope in vivo Localizations.
Breuers FK, Bräutigam A, Geimer S, Welzel UY, Stefano G, Renna L, Brandizzi F, Weber AP., Front Plant Sci 3(), 2012
PMID: 22645566
Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.
Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N., PLoS One 7(5), 2012
PMID: 22616009
Proteomic analysis of chloroplast-to-chromoplast transition in tomato reveals metabolic shifts coupled with disrupted thylakoid biogenesis machinery and elevated energy-production components.
Barsan C, Zouine M, Maza E, Bian W, Egea I, Rossignol M, Bouyssie D, Pichereaux C, Purgatto E, Bouzayen M, Latché A, Pech JC., Plant Physiol 160(2), 2012
PMID: 22908117
The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes.
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D., Annu Rev Genet 46(), 2012
PMID: 22934643
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Bräutigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol 155(1), 2011
PMID: 20543093
Do metabolite transport processes limit photosynthesis?
Bräutigam A, Weber AP., Plant Physiol 155(1), 2011
PMID: 20855521
Plant organelle proteomics: collaborating for optimal cell function.
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R., Mass Spectrom Rev 30(5), 2011
PMID: 21038434
Regulatory mechanisms underlying C4 photosynthesis.
Wang L, Peterson RB, Brutnell TP., New Phytol 190(1), 2011
PMID: 21299565
Identification of an Arabidopsis mitoferrinlike carrier protein involved in Fe metabolism.
Tarantino D, Morandini P, Ramirez L, Soave C, Murgia I., Plant Physiol Biochem 49(5), 2011
PMID: 21371898
Strategies for engineering a two-celled C(4) photosynthetic pathway into rice.
Kajala K, Covshoff S, Karki S, Woodfield H, Tolley BJ, Dionora MJ, Mogul RT, Mabilangan AE, Danila FR, Hibberd JM, Quick WP., J Exp Bot 62(9), 2011
PMID: 21335436
Plastid proteomics in higher plants: current state and future goals.
van Wijk KJ, Baginsky S., Plant Physiol 155(4), 2011
PMID: 21350036
Integrated proteome and metabolite analysis of the de-etiolation process in plastids from rice (Oryza sativa L.).
Reiland S, Grossmann J, Baerenfaller K, Gehrig P, Nunes-Nesi A, Fernie AR, Gruissem W, Baginsky S., Proteomics 11(9), 2011
PMID: 21433289
Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing.
Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP., BMC Genomics 12(), 2011
PMID: 21569327
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Bräutigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
A plastidial sodium-dependent pyruvate transporter.
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber AP, Izui K., Nature 476(7361), 2011
PMID: 21866161
The metabolite transporters of the plastid envelope: an update.
Facchinelli F, Weber AP., Front Plant Sci 2(), 2011
PMID: 22645538
The Plastid Outer Envelope - A Highly Dynamic Interface between Plastid and Cytoplasm.
Breuers FK, Bräutigam A, Weber AP., Front Plant Sci 2(), 2011
PMID: 22629266
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
Intracellular metabolite transporters in plants.
Linka N, Weber AP., Mol Plant 3(1), 2010
PMID: 20038549
The regulation of gene expression required for C4 photosynthesis.
Hibberd JM, Covshoff S., Annu Rev Plant Biol 61(), 2010
PMID: 20192753
Protein import into chloroplasts: the Tic complex and its regulation.
Kovács-Bogdán E, Soll J, Bölter B., Biochim Biophys Acta 1803(6), 2010
PMID: 20100520
Can phylogenetics identify C(4) origins and reversals?
Christin PA, Freckleton RP, Osborne CP., Trends Ecol Evol 25(7), 2010
PMID: 20605250
Proteomics application of crops in the context of climatic changes
Hashiguchi A, Ahsan N, Komatsu S., Food Res Int 43(7), 2010
PMID: IND44424443
Arabidopsis thaliana as a model organism for plant proteome research.
Wienkoop S, Baginsky S, Weckwerth W., J Proteomics 73(11), 2010
PMID: 20692386
The plant PRAT proteins - preprotein and amino acid transport in mitochondria and chloroplasts.
Pudelski B, Kraus S, Soll J, Philippar K., Plant Biol (Stuttg) 12 Suppl 1(), 2010
PMID: 20712620
Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ., Plant Cell 22(11), 2010
PMID: 21081695
Integrating phylogeny into studies of C4 variation in the grasses.
Christin PA, Salamin N, Kellogg EA, Vicentini A, Besnard G., Plant Physiol 149(1), 2009
PMID: 19126698
Cell-type-specific differentiation of chloroplasts in C4 plants.
Majeran W, van Wijk KJ., Trends Plant Sci 14(2), 2009
PMID: 19162526
Plant proteomics update (2007-2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge.
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I., J Proteomics 72(3), 2009
PMID: 19367730
Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise.
Benz JP, Stengel A, Lintala M, Lee YH, Weber A, Philippar K, Gügel IL, Kaieda S, Ikegami T, Mulo P, Soll J, Bölter B., Plant Cell 21(12), 2009
PMID: 20040542

62 References

Daten bereitgestellt von Europe PubMed Central.

Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane.
Pohlmeyer K, Soll J, Steinkamp T, Hinnah S, Wagner R., Proc. Natl. Acad. Sci. U.S.A. 94(17), 1997
PMID: 9256512
Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L.
Neuhaus HE, Thom E, Mohlmann T, Steup M, Kampfenkel K., Plant J. 11(1), 1997
PMID: 9025303
A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea.
Bolter B, Soll J, Hill K, Hemmler R, Wagner R., EMBO J. 18(20), 1999
PMID: 10523295
Solute transporters of the plastid envelope membrane.
Weber AP, Schwacke R, Flugge UI., Annu Rev Plant Biol 56(), 2005
PMID: 15862092
PRIDE: the proteomics identifications database.
Martens L, Hermjakob H, Jones P, Adamski M, Taylor C, States D, Gevaert K, Vandekerckhove J, Apweiler R., Proteomics 5(13), 2005
PMID: 16041671
Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast.
Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, von Heijne G, Grebe M, Bako L, Samuelsson G., Nat. Cell Biol. 7(12), 2005
PMID: 16284624
plprot: a comprehensive proteome database for different plastid types.
Kleffmann T, Hirsch-Hoffmann M, Gruissem W, Baginsky S., Plant Cell Physiol. 47(3), 2006
PMID: 16418230
Non-vesicular and vesicular lipid trafficking involving plastids.
Benning C, Xu C, Awai K., Curr. Opin. Plant Biol. 9(3), 2006
PMID: 16603410
OEP37 is a new member of the chloroplast outer membrane ion channels.
Goetze TA, Philippar K, Ilkavets I, Soll J, Wagner R., J. Biol. Chem. 281(26), 2006
PMID: 16624824
Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts.
Schumann U, Prestele J, O'Geen H, Brueggeman R, Wanner G, Gietl C., Proc. Natl. Acad. Sci. U.S.A. 104(3), 2007
PMID: 17215364
A multi-treatment experimental system to examine photosynthetic differentiation in the maize leaf.
Sawers RJ, Liu P, Anufrikova K, Hwang JT, Brutnell TP., BMC Genomics 8(), 2007
PMID: 17212830
Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing.
Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB., Plant Physiol. 144(1), 2007
PMID: 17351049
Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling.
Graham JW, Williams TC, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ., Plant Cell 19(11), 2007
PMID: 17981998
The Arabidopsis Information Resource (TAIR): gene structure and function annotation.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E., Nucleic Acids Res. 36(Database issue), 2007
PMID: 17986450
AKR2A-mediated import of chloroplast outer membrane proteins is essential for chloroplast biogenesis.
Bae W, Lee YJ, Kim DH, Lee J, Kim S, Sohn EJ, Hwang I., Nat. Cell Biol. 10(2), 2008
PMID: 18193034
Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells.
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ., Mol. Cell Proteomics 7(9), 2008
PMID: 18453340
A high-conductance solute channel in the chloroplastic outer envelope from Pea.
Pohlmeyer K, Soll J, Grimm R, Hill K, Wagner R., Plant Cell 10(7), 1998
PMID: 9668138
Proteomics of the chloroplast: systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins.
Peltier JB, Friso G, Kalume DE, Roepstorff P, Nilsson F, Adamska I, van Wijk KJ., Plant Cell 12(3), 2000
PMID: 10715320
Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant.
Jarvis P, Dormann P, Peto CA, Lutes J, Benning C, Chory J., Proc. Natl. Acad. Sci. U.S.A. 97(14), 2000
PMID: 10869420
Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
Emanuelsson O, Nielsen H, Brunak S, von Heijne G., J. Mol. Biol. 300(4), 2000
PMID: 10891285
Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum.
Hausler RE, Baur B, Scharte J, Teichmann T, Eicks M, Fischer KL, Flugge UI, Schubert S, Weber A, Fischer K., Plant J. 24(3), 2000
PMID: 11069702
What does it take to be C4? Lessons from the evolution of C4 photosynthesis.
Edwards GE, Furbank RT, Hatch MD, Osmond CB., Plant Physiol. 125(1), 2001
PMID: 11154293
Recombinant Arabidopsis SQD1 converts udp-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro.
Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C., J. Biol. Chem. 276(6), 2000
PMID: 11073956
Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction.
Peltier JB, Emanuelsson O, Kalume DE, Ytterberg J, Friso G, Rudella A, Liberles DA, Soderberg L, Roepstorff P, von Heijne G, van Wijk KJ., Plant Cell 14(1), 2002
PMID: 11826309
Interaction of cytosolic and plastidic nitrogen metabolism in plants.
Weber A, Flugge UI., J. Exp. Bot. 53(370), 2002
PMID: 11912229
Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.
Yu B, Xu C, Benning C., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11960029
Identifying and characterizing plastidic 2-oxoglutarate/malate and dicarboxylate transporters in Arabidopsis thaliana.
Taniguchi M, Taniguchi Y, Kawasaki M, Takeda S, Kato T, Sato S, Tabata S, Miyake H, Sugiyama T., Plant Cell Physiol. 43(7), 2002
PMID: 12154133
Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters.
Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J, Rolland N., Proc. Natl. Acad. Sci. U.S.A. 99(17), 2002
PMID: 12177442
A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter.
Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI., Plant Cell 9(3), 1997
PMID: 9090886
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search.
Keller A, Nesvizhskii AI, Kolker E, Aebersold R., Anal. Chem. 74(20), 2002
PMID: 12403597
Protein import into chloroplasts involves redox-regulated proteins.
Kuchler M, Decker S, Hormann F, Soll J, Heins L., EMBO J. 21(22), 2002
PMID: 12426385
ARAMEMNON, a novel database for Arabidopsis integral membrane proteins.
Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugge UI, Kunze R., Plant Physiol. 131(1), 2003
PMID: 12529511
Proteomics of the chloroplast envelope membranes from Arabidopsis thaliana.
Ferro M, Salvi D, Brugiere S, Miras S, Kowalski S, Louwagie M, Garin J, Joyard J, Rolland N., Mol. Cell Proteomics 2(5), 2003
PMID: 12766230
The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2.
Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber AP., Plant J. 35(3), 2003
PMID: 12887583
Proteomic study of the Arabidopsis thaliana chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis.
Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS., J. Proteome Res. 2(4), 2003
PMID: 12938931
The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway.
Voll L, Hausler RE, Hecker R, Weber A, Weissenbock G, Fiene G, Waffenschmidt S, Flugge UI., Plant J. 36(3), 2003
PMID: 14617088
Differentiation of dicarboxylate transporters in mesophyll and bundle sheath chloroplasts of maize.
Taniguchi Y, Nagasaki J, Kawasaki M, Miyake H, Sugiyama T, Taniguchi M., Plant Cell Physiol. 45(2), 2004
PMID: 14988489
Protein import into chloroplasts.
Soll J, Schleiff E., Nat. Rev. Mol. Cell Biol. 5(3), 2004
PMID: 14991000
Transport in C4 mesophyll chloroplasts characterization of the pyruvate carrier.
Huber SC, Edwards GE., Biochim. Biophys. Acta 462(3), 1977
PMID: 23150
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 18599648
PubMed | Europe PMC

Suchen in

Google Scholar