The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry

Sommer M, Bräutigam A, Weber APM (2012)
Plant Biology 14(4): 621-629.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 414.43 KB
Sommer, M.; Bräutigam, AndreaUniBi ; Weber, Andreas P. M.
Abstract / Bemerkung
The C4 photosynthetic pathway enriches carbon dioxide in the vicinity of Rubisco, thereby enabling plants to assimilate carbon more efficiently. Three canonical subtypes of C4 exist, named after their main decarboxylating enzymes: NAD-dependent malic enzyme type, NADP-dependent malic enzyme type and phosphoenolpyruvate carboxykinase type. Cleome gynandra is known to perform NAD-ME type C4 photosynthesis. To further assess the mode of C4 in C. gynandra and its manifestation in leaves of different age, total enzyme activities of eight C4-related enzymes and the relative abundance of 31 metabolites were measured. C. spinosa was used as a C3 control. C. gynandra was confirmed as an NAD-ME type C4 plant in mid-aged leaves, whereas a mixed NAD-ME and PEPCK type was observed in older leaves. Young leaves showed a C3-C4 intermediate state with respect to enzyme activities and metabolite abundances. Comparative transcriptome analysis of mid-aged leaves of C. gynandra and C. spinosa showed that the transcript of only one aspartate aminotransferase (AspAT) isoform is highly abundant in C. gynandra. However, the canonical model of the NAD-ME pathway requires two AspATs, a mitochondrial and a cytosolic isoform. Surprisingly, our results indicate the existence of only one highly abundant AspAT isoform. Using GFP-fusion, this isozyme was localised exclusively to mitochondria. We propose a revised model of NAD-ME type C4 photosynthesis in C. gynandra, in which both AspAT catalysed reactions take place in mitochondria and PEPCK catalyses an alternative decarboxylating pathway.
Aspartate aminotransferase; C4 photosynthesis; Cleome; NAD-dependent; malic enzyme
Plant Biology
Page URI


Sommer M, Bräutigam A, Weber APM. The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biology. 2012;14(4):621-629.
Sommer, M., Bräutigam, A., & Weber, A. P. M. (2012). The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biology, 14(4), 621-629. doi:10.1111/j.1438-8677.2011.00539.x
Sommer, M., Bräutigam, Andrea, and Weber, Andreas P. M. 2012. “The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry”. Plant Biology 14 (4): 621-629.
Sommer, M., Bräutigam, A., and Weber, A. P. M. (2012). The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biology 14, 621-629.
Sommer, M., Bräutigam, A., & Weber, A.P.M., 2012. The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biology, 14(4), p 621-629.
M. Sommer, A. Bräutigam, and A.P.M. Weber, “The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry”, Plant Biology, vol. 14, 2012, pp. 621-629.
Sommer, M., Bräutigam, A., Weber, A.P.M.: The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry. Plant Biology. 14, 621-629 (2012).
Sommer, M., Bräutigam, Andrea, and Weber, Andreas P. M. “The dicotyledonous NAD malic enzyme C4 plant Cleome gynandra displays age-dependent plasticity of C4 decarboxylation biochemistry”. Plant Biology 14.4 (2012): 621-629.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

31 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of alanine and aspartate aminotransferases in C4 photosynthesis.
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30126035
C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae).
Bohley K, Schröder T, Kesselmeier J, Ludwig M, Kadereit G., J Exp Bot 70(5), 2019
PMID: 30689935
C4 photosynthesis and transition of Kranz anatomy in cotyledons and leaves of Tetraena simplex.
Muhaidat R, McKown AD, Al Zoubi M, Bani Domi Z, Otoum O., Am J Bot 105(5), 2018
PMID: 29791720
Investigating the NAD-ME biochemical pathway within C4 grasses using transcript and amino acid variation in C4 photosynthetic genes.
Watson-Lazowski A, Papanicolaou A, Sharwood R, Ghannoum O., Photosynth Res 138(2), 2018
PMID: 30078073
C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors.
Wang S, Tholen D, Zhu XG., Plant Cell Environ 40(1), 2017
PMID: 27628301
Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation.
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M., J Exp Bot 68(2), 2017
PMID: 27834209
Recruitment of pre-existing networks during the evolution of C4 photosynthesis.
Reyna-Llorens I, Hibberd JM., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808102
De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae).
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G., Front Plant Sci 8(), 2017
PMID: 29184562
Interactions of C4 Subtype Metabolic Activities and Transport in Maize Are Revealed through the Characterization of DCT2 Mutants.
Weissmann S, Ma F, Furuyama K, Gierse J, Berg H, Shao Y, Taniguchi M, Allen DK, Brutnell TP., Plant Cell 28(2), 2016
PMID: 26813621
Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
Schuler ML, Mantegazza O, Weber AP., Plant J 87(1), 2016
PMID: 26945781
The Roles of Organic Acids in C4 Photosynthesis.
Ludwig M., Front Plant Sci 7(), 2016
PMID: 27242848
An assessment of the capacity for phosphoenolpyruvate carboxykinase to contribute to C4 photosynthesis.
Koteyeva NK, Voznesenskaya EV, Edwards GE., Plant Sci 235(), 2015
PMID: 25900567
Insights into C4 metabolism from comparative deep sequencing.
Burgess SJ, Hibberd JM., Curr Opin Plant Biol 25(), 2015
PMID: 26051034
Azolla domestication towards a biobased economy?
Brouwer P, Bräutigam A, Külahoglu C, Tazelaar AO, Kurz S, Nierop KG, van der Werf A, Weber AP, Schluepmann H., New Phytol 202(3), 2014
PMID: 24494738
Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
Wang Y, Bräutigam A, Weber AP, Zhu XG., J Exp Bot 65(13), 2014
PMID: 24609651
Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation.
Kromdijk J, Ubierna N, Cousins AB, Griffiths H., J Exp Bot 65(13), 2014
PMID: 24755278
The role of membrane transport in metabolic engineering of plant primary metabolism.
Weber AP, Bräutigam A., Curr Opin Biotechnol 24(2), 2013
PMID: 23040411
Significant involvement of PEP-CK in carbon assimilation of C4 eudicots.
Muhaidat R, McKown AD., Ann Bot 111(4), 2013
PMID: 23388881
RNA-Seq Assembly - Are We There Yet?
Schliesky S, Gowik U, Weber AP, Bräutigam A., Front Plant Sci 3(), 2012
PMID: 23056003
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Bräutigam A, Schlüter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372

52 References

Daten bereitgestellt von Europe PubMed Central.

Effect of growth conditions on carboxylating enzymes of Zea mays plants.
Bassi R, Passera C., Photosyn. Res. 3(1), 1982
PMID: 24459021
The Rx gene from potato controls separate virus resistance and cell death responses.
Bendahmane A, Kanyuka K, Baulcombe DC., Plant Cell 11(5), 1999
PMID: 10330465
Photosynthetic carbon fixation in relation to net CO2 uptake
Black, Annual Review of Plant Physiology and Plant Molecular Biology 24(), 1973

Bräutigam, 2011
Do metabolite transport processes limit photosynthesis?
Brautigam A, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20855521
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
The future of C4 research--maize, Flaveria or Cleome?
Brown NJ, Parsley K, Hibberd JM., Trends Plant Sci. 10(5), 2005
PMID: 15882653
C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.
Brown NJ, Palmer BG, Stanley S, Hajaji H, Janacek SH, Astley HM, Parsley K, Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG, Hibberd JM., Plant J. 61(1), 2009
PMID: 19807880
Carrier-mediated transport of metabolites in purified bean mitochondria
Desantis, Plant and Cell Physiology 17(), 1976
Analysis of maize alcohol-dehydrogenase by native-SDS 2-dimensional electrophoresis and auto-radiography
Ferl, Molecular and General Genetics 169(), 1979

Fiehn, 2007
A plastidial sodium-dependent pyruvate transporter.
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K., Nature 476(7361), 2011
PMID: 21866161
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data.
Hall JC, Sytsma KJ, Iltis HH., Am. J. Bot. 89(11), 2002
PMID: IND23323343
C4 photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure
Hatch, Biochimica et Biophysica Acta 895(), 1987
Quantitative determination of RuBP carboxylase-oxygenase protein in leaves of several C3 and C4 plants
Ku, Journal of Experimental Botany 30(), 1979
High quality metabolomic data for Chlamydomonas reinhardtii
Lee, Plant Methods (), 2008
Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C(3) to C(4) photosynthesis.
Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM., Plant J. 51(5), 2007
PMID: 17692080
Non-photosynthetic 'malic enzyme' from maize: a constituvely expressed enzyme that responds to plant defence inducers.
Maurino VG, Saigo M, Andreo CS, Drincovich MF., Plant Mol. Biol. 45(4), 2001
PMID: 11352460
Anatomical variation along the length of the Zea mays Leaf in relation to photosynthesis
Miranda, New Phytologist 88(), 1981
The influence of leaf development on the expression of C-4 metabolism in Flaveria trinervia, a C-4 dicot
Moore, Plant and Cell Physiology 27(), 1986
Photosynthetic tissue differentiation in C4 plants
Nelson, International Journal of Plant Sciences 153(), 1992
The evolution of C4 photosynthesis.
Sage RF., New Phytol. 161(2), 2004
PMID: IND43668189
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
Two birds with one stone: genes that encode products targeted to two or more compartments.
Small I, Wintz H, Akashi K, Mireau H., Plant Mol. Biol. 38(1-2), 1998
PMID: 9738971
Aspartate-aminotransferase isoenzymes in plants - comparison of two staining methods in polyacrylamide gels
Stejskal, Biologia Plantarum 36(), 1994
Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice, and Arabidopis.
Takabatake R, Hata S, Taniguchi M, Kouchi H, Sugiyama T, Izui K., Plant Mol. Biol. 40(3), 1999
PMID: 10437831
Physiological, anatomical and biochemical characterisation of photosynthetic types in genus Cleome (Cleomaceae)
Voznesenskaya EV, Koteyeva NK, Chuong SDX, Ivanova AN, Barroca J, Craven LA, Edwards GE., Functional plant biology : FPB. 34(4), 2007
PMID: IND43941857
Phosphoenolpyruvate carboxykinase from higher-plants - purification from cucumber and evidence of rapid proteolytic cleavage in extracts from a range of plant tissues
Walker, Planta 196(), 1995
Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation.
Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J., Plant J. 40(3), 2004
PMID: 15469500
Plastid transport and metabolism of C3 and C4 plants - comparative analysis and possible biotechnological exploitation
Weber, Current Opinion in Plant Biology 13(), 2010
Maltose is the major form of carbon exported from the chloroplast at night.
Weise SE, Weber AP, Sharkey TD., Planta 218(3), 2003
PMID: 14566561
Phosphoenolpyruvate carboxykinase is involved in the decarboxylation of aspartate in the bundle sheath of maize
Wingler A, Walker RP, Chen ZH, Leegood RC., Plant Physiol. 120(2), 1999
PMID: 10364405

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22289126
PubMed | Europe PMC

Suchen in

Google Scholar