Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis

Schlueter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U (2012)
Plant Physiology 160(3): 1384-1406.

Download
OA 1.88 MB
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ;
Abstract / Bemerkung
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype-and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.
Erscheinungsjahr
Zeitschriftentitel
Plant Physiology
Band
160
Ausgabe
3
Seite(n)
1384-1406
ISSN
eISSN
PUB-ID

Zitieren

Schlueter U, Mascher M, Colmsee C, et al. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology. 2012;160(3):1384-1406.
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., & Sonnewald, U. (2012). Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology, 160(3), 1384-1406. doi:10.1104/pp.112.204420
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., and Sonnewald, U. (2012). Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology 160, 1384-1406.
Schlueter, U., et al., 2012. Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology, 160(3), p 1384-1406.
U. Schlueter, et al., “Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis”, Plant Physiology, vol. 160, 2012, pp. 1384-1406.
Schlueter, U., Mascher, M., Colmsee, C., Scholz, U., Bräutigam, A., Fahnenstich, H., Sonnewald, U.: Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis. Plant Physiology. 160, 1384-1406 (2012).
Schlueter, Urte, Mascher, Martin, Colmsee, Christian, Scholz, Uwe, Bräutigam, Andrea, Fahnenstich, Holger, and Sonnewald, Uwe. “Maize Source Leaf Adaptation to Nitrogen Deficiency Affects Not Only Nitrogen and Carbon Metabolism But Also Control of Phosphate Homeostasis”. Plant Physiology 160.3 (2012): 1384-1406.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2017-12-19T09:28:25Z

48 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes.
Zeffa DM, Perini LJ, Silva MB, de Sousa NV, Scapim CA, Oliveira ALM, Amaral Júnior ATD, Azeredo Gonçalves LS., PLoS One 14(4), 2019
PMID: 30998695
Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.
Jiang L, Ball G, Hodgman C, Coules A, Zhao H, Lu C., Genes (Basel) 9(3), 2018
PMID: 29518046
A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis.
Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S., Nat Commun 9(1), 2018
PMID: 29636481
Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels.
Calzavara AK, Paiva PHG, Gabriel LC, Oliveira ALM, Milani K, Oliveira HC, Bianchini E, Pimenta JA, de Oliveira MCN, Dias-Pereira J, Stolf-Moreira R., Plant Biol (Stuttg) 20(5), 2018
PMID: 29762883
Distinct Carbon and Nitrogen Metabolism of Two Contrasting Poplar Species in Response to Different N Supply Levels.
Meng S, Wang S, Quan J, Su W, Lian C, Wang D, Xia X, Yin W., Int J Mol Sci 19(8), 2018
PMID: 30082610
Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley.
Zeng J, Quan X, He X, Cai S, Ye Z, Chen G, Zhang G., BMC Plant Biol 18(1), 2018
PMID: 30200885
OsPHR3 affects the traits governing nitrogen homeostasis in rice.
Sun Y, Luo W, Jain A, Liu L, Ai H, Liu X, Feng B, Zhang L, Zhang Z, Guohua X, Sun S., BMC Plant Biol 18(1), 2018
PMID: 30332988
Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley.
Quan X, Zeng J, Han Z, Zhang G., Plant Physiol Biochem 111(), 2017
PMID: 27951495
Temporal development of the barley leaf metabolic response to Pi limitation.
Alexova R, Nelson CJ, Millar AH., Plant Cell Environ 40(5), 2017
PMID: 27995647
Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit.
Ganie AH, Ahmad A, Yousuf PY, Pandey R, Ahmad S, Aref IM, Iqbal M., Protoplasma 254(6), 2017
PMID: 28361178
Transcriptomic response of durum wheat to nitrogen starvation.
Curci PL, Aiese Cigliano R, Zuluaga DL, Janni M, Sanseverino W, Sonnante G., Sci Rep 7(1), 2017
PMID: 28446759
Altered Expression of OsNLA1 Modulates Pi Accumulation in Rice (Oryza sativa L.) Plants.
Zhong S, Mahmood K, Bi YM, Rothstein SJ, Ranathunge K., Front Plant Sci 8(), 2017
PMID: 28626465
Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply.
Heyneke E, Watanabe M, Erban A, Duan G, Buchner P, Walther D, Kopka J, Hawkesford MJ, Hoefgen R., Front Plant Sci 8(), 2017
PMID: 29238358
Systems biology and metabolic modelling unveils limitations to polyhydroxybutyrate accumulation in sugarcane leaves; lessons for C4 engineering.
McQualter RB, McQualter RB, Bellasio C, Gebbie LK, Petrasovits LA, Palfreyman RW, Hodson MP, Plan MR, Blackman DM, Brumbley SM, Nielsen LK., Plant Biotechnol J 14(2), 2016
PMID: 26015295
Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stage-specific transcriptional response.
Plett D, Baumann U, Schreiber AW, Holtham L, Kalashyan E, Toubia J, Nau J, Beatty M, Rafalski A, Dhugga KS, Tester M, Garnett T, Kaiser BN., Plant Biotechnol J 14(1), 2016
PMID: 26038196
Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation.
Gan H, Jiao Y, Jia J, Wang X, Li H, Shi W, Peng C, Polle A, Luo ZB., Tree Physiol 36(1), 2016
PMID: 26420793
Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen.
Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E., J Exp Bot 67(14), 2016
PMID: 27255929
Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.
Lihavainen J, Ahonen V, Keski-Saari S, Kontunen-Soppela S, Oksanen E, Keinänen M., J Exp Bot 67(14), 2016
PMID: 27259554
Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms.
Plett D, Holtham L, Baumann U, Kalashyan E, Francis K, Enju A, Toubia J, Roessner U, Bacic A, Rafalski A, Dhugga KS, Tester M, Garnett T, Kaiser BN., Plant Mol Biol 92(3), 2016
PMID: 27511191
Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches.
Beatty PH, Klein MS, Fischer JJ, Lewis IA, Muench DG, Good AG., Plants (Basel) 5(4), 2016
PMID: 27735856
ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines.
Han J, Wang L, Zheng H, Pan X, Li H, Chen F, Li X., Planta 242(4), 2015
PMID: 26013182
Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.
Comadira G, Rasool B, Karpinska B, Morris J, Verrall SR, Hedley PE, Foyer CH, Hancock RD., J Exp Bot 66(12), 2015
PMID: 26038307
Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions.
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S., Front Plant Sci 6(), 2015
PMID: 26322069
Whole plant acclimation responses by finger millet to low nitrogen stress.
Goron TL, Bhosekar VK, Shearer CR, Watts S, Raizada MN., Front Plant Sci 6(), 2015
PMID: 26347768
Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense
Matsumura EE, Secco VA, Moreira RS, dos Santos OJAP, Hungria M, de Oliveira ALM., Ann Microbiol 65(4), 2015
PMID: IND604659532
Physiological and photosynthetic characteristics of indica Hang2 expressing the sugarcane PEPC gene.
Lian L, Wang X, Zhu Y, He W, Cai Q, Xie H, Zhang M, Zhang J., Mol Biol Rep 41(4), 2014
PMID: 24469712
miR444a has multiple functions in the rice nitrate-signaling pathway.
Yan Y, Wang H, Hamera S, Chen X, Fang R., Plant J 78(1), 2014
PMID: 24460537
Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.
Zhang S, Jiang H, Zhao H, Korpelainen H, Li C., Tree Physiol 34(4), 2014
PMID: 24739232
Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B., J Exp Bot 65(19), 2014
PMID: 24863438
UniVIO: a multiple omics database with hormonome and transcriptome data from rice.
Kudo T, Akiyama K, Kojima M, Makita N, Sakurai T, Sakakibara H., Plant Cell Physiol 54(2), 2013
PMID: 23314752
Manipulation of microRNA expression to improve nitrogen use efficiency.
Fischer JJ, Beatty PH, Good AG, Muench DG., Plant Sci 210(), 2013
PMID: 23849115
Nitrogen stress affects the turnover and size of nitrogen pools supplying leaf growth in a grass.
Lehmeier CA, Wild M, Schnyder H., Plant Physiol 162(4), 2013
PMID: 23757403
Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance.
Schlüter U, Colmsee C, Scholz U, Bräutigam A, Weber AP, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U., BMC Genomics 14(), 2013
PMID: 23822863
Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability.
Luo J, Li H, Liu T, Polle A, Peng C, Luo ZB., J Exp Bot 64(14), 2013
PMID: 23963674
Manipulation of microRNA expression to improve nitrogen use efficiency
Fischer JJ, Allen G. Good, Douglas G. Muench, Perrin H. Beatty., Plant Sci 210(), 2013
PMID: IND500678014
OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize.
Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Börnke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber AP, Schreiber F, Scholz U, Sonnewald U., BMC Plant Biol 12(), 2012
PMID: 23272737

79 References

Daten bereitgestellt von Europe PubMed Central.

Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories.
Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster GT, Meyer RC, Messerli G, Gronlund JT, Perkovic J, Wigmore E, May S, Bevan MW, Meyer C, Rubio-Diaz S, Weigel D, Micol JL, Buchanan-Wollaston V, Fiorani F, Walsh S, Rinn B, Gruissem W, Hilson P, Hennig L, Willmitzer L, Granier C., Plant Physiol. 152(4), 2010
PMID: 20200072
Transcriptome and metabolome profiling of field-grown transgenic barley lack induced differences but show cultivar-specific variances.
Kogel KH, Voll LM, Schafer P, Jansen C, Wu Y, Langen G, Imani J, Hofmann J, Schmiedl A, Sonnewald S, von Wettstein D, Cook RJ, Sonnewald U., Proc. Natl. Acad. Sci. U.S.A. 107(14), 2010
PMID: 20308540
agriGO: a GO analysis toolkit for the agricultural community.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20435677
Genetic engineering approaches to improve bioethanol production from maize.
Torney F, Moeller L, Scarpa A, Wang K., Curr. Opin. Biotechnol. 18(3), 2007
PMID: 17399975
Cell-specific nitrogen responses mediate developmental plasticity.
Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD., Proc. Natl. Acad. Sci. U.S.A. 105(2), 2008
PMID: 18180456
OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants.
Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P., Plant Physiol. 146(4), 2008
PMID: 18263782
Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots.
Tian Q, Chen F, Liu J, Zhang F, Mi G., J. Plant Physiol. 165(9), 2007
PMID: 17928098
Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.
Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L., J. Exp. Bot. 59(9), 2008
PMID: 18503042
Expression of two maize putative nitrate transporters in response to nitrate and sugar availability.
Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S., Plant Biol (Stuttg) 10(4), 2008
PMID: 18557906
Geometric interpretation of gene coexpression network analysis.
Horvath S, Dong J., PLoS Comput. Biol. 4(8), 2008
PMID: 18704157
Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling.
Howarth JR, Parmar S, Jones J, Shepherd CE, Corol DI, Galster AM, Hawkins ND, Miller SJ, Baker JM, Verrier PJ, Ward JL, Beale MH, Barraclough PB, Hawkesford MJ., J. Exp. Bot. 59(13), 2008
PMID: 18791197
Microarray analysis of vegetative phase change in maize.
Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE., Plant J. 56(6), 2008
PMID: 18764925
High glycolate oxidase activity is required for survival of maize in normal air.
Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP., Plant Physiol. 149(1), 2008
PMID: 18805949
WGCNA: an R package for weighted correlation network analysis.
Langfelder P, Horvath S., BMC Bioinformatics 9(), 2008
PMID: 19114008
Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis.
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M., Plant Cell Environ. 32(3), 2008
PMID: 19054347
Co-ordination of leaf minor amino acid contents in crop species: significance and interpretation.
Noctor G, Novitskaya L, Lea PJ, Foyer CH., J. Exp. Bot. 53(370), 2002
PMID: 11912236
Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L., Plant J. 23(1), 2000
PMID: 10929108
Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize.
Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A., Plant Physiol. 125(3), 2001
PMID: 11244107
Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution.
Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N., Nature 411(6840), 2001
PMID: 11418848
Sink regulation of photosynthesis.
Paul MJ, Foyer CH., J. Exp. Bot. 52(360), 2001
PMID: 11457898
Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin.
Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H., J. Exp. Bot. 53(370), 2002
PMID: 11912239
Carbon metabolite feedback regulation of leaf photosynthesis and development.
Paul MJ, Pellny TK., J. Exp. Bot. 54(382), 2003
PMID: 12508065
TM4: a free, open-source system for microarray data management and analysis.
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J., BioTechniques 34(2), 2003
PMID: 12613259
Malate. Jack of all trades or master of a few?
Fernie AR, Martinoia E., Phytochemistry 70(7), 2009
PMID: 19473680
Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
Zhao L, Liu F, Xu W, Di C, Zhou S, Xue Y, Yu J, Su Z., Plant Biotechnol. J. 7(6), 2009
PMID: 19508276
Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.
Coleman HD, Yan J, Mansfield SD., Proc. Natl. Acad. Sci. U.S.A. 106(31), 2009
PMID: 19625620
The B73 maize genome: complexity, diversity, and dynamics.
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K, Yeh CT, Emrich SJ, Jia Y, Kalyanaraman A, Hsia AP, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia JM, Deragon JM, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK., Science 326(5956), 2009
PMID: 19965430
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis.
Rouached H, Stefanovic A, Secco D, Bulak Arpat A, Gout E, Bligny R, Poirier Y., Plant J. 65(4), 2011
PMID: 21288266
From the soil to the seeds: the long journey of nitrate in plants.
Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F., J. Exp. Bot. 62(4), 2010
PMID: 21193579
Amino acid export in plants: a missing link in nitrogen cycling.
Okumoto S, Pilot G., Mol Plant 4(3), 2011
PMID: 21324969
Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis.
Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D., Plant Physiol. 156(3), 2011
PMID: 21346170
Phosphate deprivation in maize: genetics and genomics.
Calderon-Vazquez C, Sawers RJ, Herrera-Estrella L., Plant Physiol. 156(3), 2011
PMID: 21617030
Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.
Krapp A, Berthome R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F., Plant Physiol. 157(3), 2011
PMID: 21900481
Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.
Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM., Plant Physiol. 157(4), 2011
PMID: 21980173
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
The emerging importance of the SPX domain-containing proteins in phosphate homeostasis.
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J., New Phytol. 193(4), 2012
PMID: 22403821
Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis.
Price J, Laxmi A, St Martin SK, Jang JC., Plant Cell 16(8), 2004
PMID: 15273295
Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M., Plant Physiol. 136(1), 2004
PMID: 15375205
Improved method for the isolation of RNA from plant tissues.
Logemann J, Schell J, Willmitzer L., Anal. Biochem. 163(1), 1987
PMID: 2441623
Expression of a gene specific for iron deficiency (Ids3) in the roots of Hordeum vulgare.
Nakanishi H, Okumura N, Umehara Y, Nishizawa NK, Chino M, Mori S., Plant Cell Physiol. 34(3), 1993
PMID: 8019781
VANTED: a system for advanced data analysis and visualization in the context of biological networks.
Junker BH, Klukas C, Schreiber F., BMC Bioinformatics 7(), 2006
PMID: 16519817
Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray.
Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, Li X, Yuan D, Han B, Zhang Q., Plant Mol. Biol. 60(5), 2006
PMID: 16649102
Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants.
Shenton M, Fontaine V, Hartwell J, Marsh JT, Jenkins GI, Nimmo HG., Plant J. 48(1), 2006
PMID: 16925599
Impact of the C-N status on the amino acid profile in tobacco source leaves.
Fritz C, Mueller C, Matt P, Feil R, Stitt M., Plant Cell Environ. 29(11), 2006
PMID: 17081241
Transport and metabolism of raffinose family oligosaccharides in transgenic potato.
Hannah MA, Zuther E, Buchel K, Heyer AG., J. Exp. Bot. 57(14), 2006
PMID: 17050641
How do plants respond to nutrient shortage by biomass allocation?
Hermans C, Hammond JP, White PJ, Verbruggen N., Trends Plant Sci. 11(12), 2006
PMID: 17092760
Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus.
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR., Plant Cell Environ. 30(1), 2007
PMID: 17177879
Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis.
Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM., Genome Biol. 8(1), 2007
PMID: 17217541

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22972706
PubMed | Europe PMC

Suchen in

Google Scholar