The role of membrane transport in metabolic engineering of plant primary metabolism

Weber APM, Bräutigam A (2013)
Current Opinion in Biotechnology 24(2): 256-262.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 605.94 KB
Autor*in
Weber, Andreas P. M.; Bräutigam, AndreaUniBi
Abstract / Bemerkung
Plant cells are highly compartmentalized and so is their metabolism. Most metabolic pathways are distributed across several cellular compartments, which requires the activities of membrane transporters to catalyze the flux of precursors, intermediates, and end products between compartments. Metabolites such as sucrose and amino acids have to be transported between cells and tissues to supply, for example, metabolism in developing seeds or fruits with precursors and energy. Thus, rational engineering of plant primary metabolism requires a detailed and molecular understanding of the membrane transporters. This knowledge however still lags behind that of soluble enzymes. Recent advances include the molecular identification of pyruvate transporters at the chloroplast and mitochondrial membranes and of a new class of transporters called SWEET that are involved in the release of sugars to the apoplast.
Erscheinungsjahr
2013
Zeitschriftentitel
Current Opinion in Biotechnology
Band
24
Ausgabe
2
Seite(n)
256-262
ISSN
0958-1669
Page URI
https://pub.uni-bielefeld.de/record/2915144

Zitieren

Weber APM, Bräutigam A. The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology. 2013;24(2):256-262.
Weber, A. P. M., & Bräutigam, A. (2013). The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology, 24(2), 256-262. doi:10.1016/j.copbio.2012.09.010
Weber, Andreas P. M., and Bräutigam, Andrea. 2013. “The role of membrane transport in metabolic engineering of plant primary metabolism”. Current Opinion in Biotechnology 24 (2): 256-262.
Weber, A. P. M., and Bräutigam, A. (2013). The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology 24, 256-262.
Weber, A.P.M., & Bräutigam, A., 2013. The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology, 24(2), p 256-262.
A.P.M. Weber and A. Bräutigam, “The role of membrane transport in metabolic engineering of plant primary metabolism”, Current Opinion in Biotechnology, vol. 24, 2013, pp. 256-262.
Weber, A.P.M., Bräutigam, A.: The role of membrane transport in metabolic engineering of plant primary metabolism. Current Opinion in Biotechnology. 24, 256-262 (2013).
Weber, Andreas P. M., and Bräutigam, Andrea. “The role of membrane transport in metabolic engineering of plant primary metabolism”. Current Opinion in Biotechnology 24.2 (2013): 256-262.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
976bae32b11d8a0ba1519056f281a15b


9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Arabidopsis: the original plant chassis organism.
Holland CK, Jez JM., Plant Cell Rep 37(10), 2018
PMID: 29663032
Investigating the NAD-ME biochemical pathway within C4 grasses using transcript and amino acid variation in C4 photosynthetic genes.
Watson-Lazowski A, Papanicolaou A, Sharwood R, Ghannoum O., Photosynth Res 138(2), 2018
PMID: 30078073
Multi-Omics of Tomato Glandular Trichomes Reveals Distinct Features of Central Carbon Metabolism Supporting High Productivity of Specialized Metabolites.
Balcke GU, Bennewitz S, Bergau N, Athmer B, Henning A, Majovsky P, Jiménez-Gómez JM, Hoehenwarter W, Tissier A., Plant Cell 29(5), 2017
PMID: 28408661
Structure of the triose-phosphate/phosphate translocator reveals the basis of substrate specificity.
Lee Y, Nishizawa T, Takemoto M, Kumazaki K, Yamashita K, Hirata K, Minoda A, Nagatoishi S, Tsumoto K, Ishitani R, Nureki O., Nat Plants 3(10), 2017
PMID: 28970497
Moving toward a comprehensive map of central plant metabolism.
Sulpice R, McKeown PC., Annu Rev Plant Biol 66(), 2015
PMID: 25621519

44 References

Daten bereitgestellt von Europe PubMed Central.

Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth.
Steuer R, Knoop H, Machne R., J. Exp. Bot. 63(6), 2012
PMID: 22450165
Strain improvement by metabolic engineering: lysine production as a case study for systems biology.
Koffas M, Stephanopoulos G., Curr. Opin. Biotechnol. 16(3), 2005
PMID: 15961038
Production of the antimalarial drug precursor artemisinic acid in engineered yeast.
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD., Nature 440(7086), 2006
PMID: 16612385
Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.
O'Grady J, Schwender J, Shachar-Hill Y, Morgan JA., J. Exp. Bot. 63(6), 2012
PMID: 22371075
Metabolic flux analysis in plants: from intelligent design to rational engineering.
Libourel IG, Shachar-Hill Y., Annu Rev Plant Biol 59(), 2008
PMID: 18257707
Engineering photosynthesis in plants and synthetic microorganisms
Maurino, J Exp Bot (), 2012
Photorespiration has a dual origin and manifold links to central metabolism.
Bauwe H, Hagemann M, Kern R, Timm S., Curr. Opin. Plant Biol. 15(3), 2012
PMID: 22284850
Photorespiration and the evolution of C4 photosynthesis.
Sage RF, Sage TL, Kocacinar F., Annu Rev Plant Biol 63(), 2012
PMID: 22404472
Design and analysis of synthetic carbon fixation pathways.
Bar-Even A, Noor E, Lewis NE, Milo R., Proc. Natl. Acad. Sci. U.S.A. 107(19), 2010
PMID: 20410460
Improving carbon fixation pathways.
Ducat DC, Silver PA., Curr Opin Chem Biol 16(3-4), 2012
PMID: 22647231
The development of C₄rice: current progress and future challenges.
von Caemmerer S, Quick WP, Furbank RT., Science 336(6089), 2012
PMID: 22745421
Photorespiration: current status and approaches for metabolic engineering.
Maurino VG, Peterhansel C., Curr. Opin. Plant Biol. 13(3), 2010
PMID: 20185358
Photorespiration redesigned.
Peterhansel C, Maurino VG., Plant Physiol. 155(1), 2010
PMID: 20940347
The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants.
Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M., Proc. Natl. Acad. Sci. U.S.A. 105(44), 2008
PMID: 18957552
Pathway and importance of photorespiratory 2-phosphoglycolate metabolism in cyanobacteria.
Hagemann M, Eisenhut M, Hackenberg C, Bauwe H., Adv. Exp. Med. Biol. 675(), 2010
PMID: 20532737
Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana.
Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C., Nat. Biotechnol. 25(5), 2007
PMID: 17435746
Transgenic Introduction of a Glycolate Oxidative Cycle into A. thaliana Chloroplasts Leads to Growth Improvement.
Maier A, Fahnenstich H, von Caemmerer S, Engqvist MK, Weber AP, Flugge UI, Maurino VG., Front Plant Sci 3(), 2012
PMID: 22639647
A plastidial sodium-dependent pyruvate transporter.
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K., Nature 476(7361), 2011
PMID: 21866161
The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M., Plant J. 65(1), 2010
PMID: 21175886
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans.
Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J., Science 337(6090), 2012
PMID: 22628558
Identification and functional expression of the mitochondrial pyruvate carrier.
Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC., Science 337(6090), 2012
PMID: 22628554
An autoinhibitory domain confers redox regulation to maize glycerate kinase.
Bartsch O, Mikkat S, Hagemann M, Bauwe H., Plant Physiol. 153(2), 2010
PMID: 20413649
A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.
Bari R, Kebeish R, Kalamajka R, Rademacher T, Peterhansel C., J. Exp. Bot. 55(397), 2004
PMID: 14966218
Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants.
Zhang L, Hausler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flugge UI, Ludewig F., Plant Biotechnol. J. 6(5), 2008
PMID: 18363632
The role of transporters in supplying energy to plant plastids.
Flugge UI, Hausler RE, Ludewig F, Gierth M., J. Exp. Bot. 62(7), 2011
PMID: 21511915
Sucrose efflux mediated by SWEET proteins as a key step for phloem transport.
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB., Science 335(6065), 2011
PMID: 22157085
Sugar transporters for intercellular exchange and nutrition of pathogens.
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB., Nature 468(7323), 2010
PMID: 21107422
Do metabolite transport processes limit photosynthesis?
Brautigam A, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20855521
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells.
Hou BH, Takanaga H, Grossmann G, Chen LQ, Qu XQ, Jones AM, Lalonde S, Schweissgut O, Wiechert W, Frommer WB., Nat Protoc 6(11), 2011
PMID: 22036884
NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds.
Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jorgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA., Nature 488(7412), 2012
PMID: 22864417
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 23040411
PubMed | Europe PMC

Suchen in

Google Scholar