Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance

Schlueter U, Colmsee C, Scholz U, Bräutigam A, Weber APM, Zellerhoff N, Bucher M, Fahnenstich H, Sonnewald U (2013)
BMC Genomics 14(1): 442.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 1.41 MB
Schlueter, Urte; Colmsee, Christian; Scholz, Uwe; Bräutigam, AndreaUniBi ; Weber, Andreas P. M.; Zellerhoff, Nina; Bucher, Marcel; Fahnenstich, Holger; Sonnewald, Uwe
Abstract / Bemerkung
Background: Abiotic stress causes disturbances in the cellular homeostasis. Re-adjustment of balance in carbon, nitrogen and phosphorus metabolism therefore plays a central role in stress adaptation. However, it is currently unknown which parts of the primary cell metabolism follow common patterns under different stress conditions and which represent specific responses. Results: To address these questions, changes in transcriptome, metabolome and ionome were analyzed in maize source leaves from plants suffering low temperature, low nitrogen (N) and low phosphorus (P) stress. The selection of maize as study object provided data directly from an important crop species and the so far underexplored C-4 metabolism. Growth retardation was comparable under all tested stress conditions. The only primary metabolic pathway responding similar to all stresses was nitrate assimilation, which was down-regulated. The largest group of commonly regulated transcripts followed the expression pattern: down under low temperature and low N, but up under low P. Several members of this transcript cluster could be connected to P metabolism and correlated negatively to different phosphate concentration in the leaf tissue. Accumulation of starch under low temperature and low N stress, but decrease in starch levels under low P conditions indicated that only low P treated leaves suffered carbon starvation. Conclusions: Maize employs very different strategies to manage N and P metabolism under stress. While nitrate assimilation was regulated depending on demand by growth processes, phosphate concentrations changed depending on availability, thus building up reserves under excess conditions. Carbon and energy metabolism of the C-4 maize leaves were particularly sensitive to P starvation.
Abiotic stress; Nutrient stress; Transcriptome; Metabolome; Ionome; Maize
BMC Genomics
Page URI


Schlueter U, Colmsee C, Scholz U, et al. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics. 2013;14(1): 442.
Schlueter, U., Colmsee, C., Scholz, U., Bräutigam, A., Weber, A. P. M., Zellerhoff, N., Bucher, M., et al. (2013). Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics, 14(1), 442. doi:10.1186/1471-2164-14-442
Schlueter, Urte, Colmsee, Christian, Scholz, Uwe, Bräutigam, Andrea, Weber, Andreas P. M., Zellerhoff, Nina, Bucher, Marcel, Fahnenstich, Holger, and Sonnewald, Uwe. 2013. “Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance”. BMC Genomics 14 (1): 442.
Schlueter, U., Colmsee, C., Scholz, U., Bräutigam, A., Weber, A. P. M., Zellerhoff, N., Bucher, M., Fahnenstich, H., and Sonnewald, U. (2013). Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics 14:442.
Schlueter, U., et al., 2013. Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics, 14(1): 442.
U. Schlueter, et al., “Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance”, BMC Genomics, vol. 14, 2013, : 442.
Schlueter, U., Colmsee, C., Scholz, U., Bräutigam, A., Weber, A.P.M., Zellerhoff, N., Bucher, M., Fahnenstich, H., Sonnewald, U.: Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance. BMC Genomics. 14, : 442 (2013).
Schlueter, Urte, Colmsee, Christian, Scholz, Uwe, Bräutigam, Andrea, Weber, Andreas P. M., Zellerhoff, Nina, Bucher, Marcel, Fahnenstich, Holger, and Sonnewald, Uwe. “Adaptation of maize source leaf metabolism to stress related disturbances in carbon, nitrogen and phosphorus balance”. BMC Genomics 14.1 (2013): 442.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

25 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

An Integrative Systems Perspective on Plant Phosphate Research.
Ajmera I, Hodgman TC, Lu C., Genes (Basel) 10(2), 2019
PMID: 30781872
A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis.
Maeda Y, Konishi M, Kiba T, Sakuraba Y, Sawaki N, Kurai T, Ueda Y, Sakakibara H, Yanagisawa S., Nat Commun 9(1), 2018
PMID: 29636481
Review: Omics and Strategic Yield Improvement in Oil Crops
Teh HF, Bee Keat Neoh, Nalisha Ithnin, Leona Daniela Jeffery Daim, Tony Eng Keong Ooi, David Ross Appleton., J Am Oil Chem Soc 94(10), 2017
PMID: IND605806901
Characterization of the Wheat Leaf Metabolome during Grain Filling and under Varied N-Supply.
Heyneke E, Watanabe M, Erban A, Duan G, Buchner P, Walther D, Kopka J, Hawkesford MJ, Hoefgen R., Front Plant Sci 8(), 2017
PMID: 29238358
Metabolic response of maize plants to multi-factorial abiotic stresses.
Sun CX, Li MQ, Gao XX, Liu LN, Wu XF, Zhou JH., Plant Biol (Stuttg) 18 Suppl 1(), 2016
PMID: 25622534
Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen.
Lihavainen J, Keinänen M, Keski-Saari S, Kontunen-Soppela S, Sõber A, Oksanen E., J Exp Bot 67(14), 2016
PMID: 27255929
Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.
Lihavainen J, Ahonen V, Keski-Saari S, Kontunen-Soppela S, Oksanen E, Keinänen M., J Exp Bot 67(14), 2016
PMID: 27259554
Linking phosphorus availability with photo-oxidative stress in plants.
Hernández I, Munné-Bosch S., J Exp Bot 66(10), 2015
PMID: 25740928
An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis.
Gerlach N, Schmitz J, Polatajko A, Schlüter U, Fahnenstich H, Witt S, Fernie AR, Uroic K, Scholz U, Sonnewald U, Bucher M., Plant Cell Environ 38(8), 2015
PMID: 25630535
ZD958 is a low-nitrogen-efficient maize hybrid at the seedling stage among five maize and two teosinte lines.
Han J, Wang L, Zheng H, Pan X, Li H, Chen F, Li X., Planta 242(4), 2015
PMID: 26013182
Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance.
Comadira G, Rasool B, Karpinska B, Morris J, Verrall SR, Hedley PE, Foyer CH, Hancock RD., J Exp Bot 66(12), 2015
PMID: 26038307
Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions.
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S., Front Plant Sci 6(), 2015
PMID: 26322069
Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.
Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B., J Exp Bot 65(19), 2014
PMID: 24863438
Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils.
Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M., Front Plant Sci 4(), 2013
PMID: 24409191

110 References

Daten bereitgestellt von Europe PubMed Central.

Plant productivity and environment.
Boyer JS., Science 218(4571), 1982
PMID: 17808529
Effects of abiotic stress on plants: a systems biology perspective.
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K., BMC Plant Biol. 11(), 2011
PMID: 22094046
The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.
Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K., Plant J. 50(2), 2007
PMID: 17376166
The interaction of plant biotic and abiotic stresses: from genes to the field.
Atkinson NJ, Urwin PE., J. Exp. Bot. 63(10), 2012
PMID: 22467407
Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.
Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K., Proc. Natl. Acad. Sci. U.S.A. 101(27), 2004
PMID: 15199185
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K., Proc. Natl. Acad. Sci. U.S.A. 104(15), 2007
PMID: 17420480
Strong relationship between elemental stoichiometry and metabolome in plants.
Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelas J., Proc. Natl. Acad. Sci. U.S.A. 109(11), 2012
PMID: 22371578
Nutrient limitation on terrestrial plant growth--modeling the interaction between nitrogen and phosphorus.
Agren GI, Wetterstedt JA, Billberger MF., New Phytol. 194(4), 2012
PMID: 22458659
Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose
How do plants respond to nutrient shortage by biomass allocation?
Hermans C, Hammond JP, White PJ, Verbruggen N., Trends Plant Sci. 11(12), 2006
PMID: 17092760
Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus.
Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR., Plant Cell Environ. 30(1), 2007
PMID: 17177879
Metabolomics of temperature stress.
Guy C, Kaplan F, Kopka J, Selbig J, Hincha DK., Physiol Plant 132(2), 2008
PMID: 18251863
Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review
Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range.
Usadel B, Blasing OE, Gibon Y, Poree F, Hohne M, Gunter M, Trethewey R, Kamlage B, Poorter H, Stitt M., Plant Cell Environ. 31(4), 2007
PMID: 18088337
C4 photosynthesis and water stress.
Ghannoum O., Ann. Bot. 103(4), 2008
PMID: 18552367
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
A molecular explanation of why C4 photosynthesis in Miscanthus, but not maize, can acclimatize to chilling conditions
Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen.
Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M., Plant Physiol. 136(1), 2004
PMID: 15375205
Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation.
Krapp A, Berthome R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, Elftieh S, Major H, Renou JP, Daniel-Vedele F., Plant Physiol. 157(3), 2011
PMID: 21900481
Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.
Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM., Plant Physiol. 157(4), 2011
PMID: 21980173
The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize.
Amiour N, Imbaud S, Clement G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quillere I, Canas R, Tercet-Laforgue T, Hirel B., J. Exp. Bot. 63(14), 2012
PMID: 22936829
Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.
Schluter U, Mascher M, Colmsee C, Scholz U, Brautigam A, Fahnenstich H, Sonnewald U., Plant Physiol. 160(3), 2012
PMID: 22972706
A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation.
Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC., Proc. Natl. Acad. Sci. U.S.A. 102(33), 2005
PMID: 16085708
Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves.
Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A, Ohta T, Sato Y, Miyamoto C, Honda S, Kojima K, Sasaki T, Kishimoto N, Kikuchi S, Osaki M., J. Exp. Bot. 57(9), 2006
PMID: 16720613
Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism.
Muller R, Morant M, Jarmer H, Nilsson L, Nielsen TH., Plant Physiol. 143(1), 2006
PMID: 17085508
The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation.
Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah MA, Wang XJ, Bajic VB, Chua NH., BMC Plant Biol. 12(), 2012
PMID: 22553952
A global survey of gene regulation during cold acclimation in Arabidopsis thaliana
Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes.
Zhang T, Zhao X, Wang W, Pan Y, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B., PLoS ONE 7(8), 2012
PMID: 22912843
Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications.
Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NP, Simmonds J., Plant Cell Physiol. 52(6), 2011
PMID: 21546369
Probing the reproducibility of leaf growth and molecular phenotypes: a comparison of three Arabidopsis accessions cultivated in ten laboratories.
Massonnet C, Vile D, Fabre J, Hannah MA, Caldana C, Lisec J, Beemster GT, Meyer RC, Messerli G, Gronlund JT, Perkovic J, Wigmore E, May S, Bevan MW, Meyer C, Rubio-Diaz S, Weigel D, Micol JL, Buchanan-Wollaston V, Fiorani F, Walsh S, Rinn B, Gruissem W, Hilson P, Hennig L, Willmitzer L, Granier C., Plant Physiol. 152(4), 2010
PMID: 20200072
agriGO: a GO analysis toolkit for the agricultural community.
Du Z, Zhou X, Ling Y, Zhang Z, Su Z., Nucleic Acids Res. 38(Web Server issue), 2010
PMID: 20435677
The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development.
Schneeberger R, Tsiantis M, Freeling M, Langdale JA., Development 125(15), 1998
PMID: 9655808
Phosphate deprivation in maize: genetics and genomics.
Calderon-Vazquez C, Sawers RJ, Herrera-Estrella L., Plant Physiol. 156(3), 2011
PMID: 21617030
Sucrose transporter1 functions in phloem loading in maize leaves.
Slewinski TL, Meeley R, Braun DM., J. Exp. Bot. 60(3), 2009
PMID: 19181865
A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.
Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP., Proc. Natl. Acad. Sci. U.S.A. 92(20), 1995
PMID: 7568131
Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis.
Tschoep H, Gibon Y, Carillo P, Armengaud P, Szecowka M, Nunes-Nesi A, Fernie AR, Koehl K, Stitt M., Plant Cell Environ. 32(3), 2008
PMID: 19054347
Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.).
Huang CY, Roessner U, Eickmeier I, Genc Y, Callahan DL, Shirley N, Langridge P, Bacic A., Plant Cell Physiol. 49(5), 2008
PMID: 18344526
Distinctive transcriptome responses to adverse environmental conditions in Zea mays L.
Fernandes J, Morrow DJ, Casati P, Walbot V., Plant Biotechnol. J. 6(8), 2008
PMID: 18643947
CO2 assimilation and partitioning of carbon in maize plants deprived of orthophosphate
Regulation of macronutrient transport.
Amtmann A, Blatt MR., New Phytol. 181(1), 2009
PMID: 19076716
Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl).
Hansch R, Mendel RR., Curr. Opin. Plant Biol. 12(3), 2009
PMID: 19524482
Sugar sensing and signaling in plants: Conserved and novel mechanisms
Carbon metabolite feedback regulation of leaf photosynthesis and development.
Paul MJ, Pellny TK., J. Exp. Bot. 54(382), 2003
PMID: 12508065
Phenotypic plasticity and growth temperature: understanding interspecific variability.
Atkin OK, Loveys BR, Atkinson LJ, Pons TL., J. Exp. Bot. 57(2), 2005
PMID: 16371402
In-vivo photosynthetic electron-transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves
The role of stomata in sensing and driving environmental change.
Hetherington AM, Woodward FI., Nature 424(6951), 2003
PMID: 12931178
Koch KE., Annu. Rev. Plant Physiol. Plant Mol. Biol. 47(), 1996
PMID: 15012299
The role of inorganic phosphate in the regulation of C4 photosynthesis.
Iglesias AA, Plaxton WC, Podesta FE., Photosyn. Res. 35(3), 1993
PMID: 24318750
The role of P-i recycling processes during photosynthesis in phosphate-deficient bean plants
Does anoxia tolerance involve altering the energy currency towards PPi?
Huang S, Colmer TD, Millar AH., Trends Plant Sci. 13(5), 2008
PMID: 18439868
Flooding stress: Acclimations and genetic diversity
Metabolic adaptations of phosphate-starved plants.
Plaxton WC, Tran HT., Plant Physiol. 156(3), 2011
PMID: 21562330
The role of alternative oxidase in modulating carbon use efficiency and growth during macronutrient stress in tobacco cells.
Sieger SM, Kristensen BK, Robson CA, Amirsadeghi S, Eng EW, Abdel-Mesih A, Moller IM, Vanlerberghe GC., J. Exp. Bot. 56(416), 2005
PMID: 15824074
Intercellular compartmentation of sucrose synthesis in leaves of Zea mays L.
Furbank RT, Stitt M, Foyer CH., Planta 164(2), 1985
PMID: 24249558
The developmental dynamics of the maize leaf transcriptome.
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP., Nat. Genet. 42(12), 2010
PMID: 21037569
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
Expression of two maize putative nitrate transporters in response to nitrate and sugar availability.
Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S., Plant Biol (Stuttg) 10(4), 2008
PMID: 18557906
From the soil to the seeds: the long journey of nitrate in plants.
Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F., J. Exp. Bot. 62(4), 2010
PMID: 21193579
LEAF TIP NECROSIS1 plays a pivotal role in the regulation of multiple phosphate starvation responses in rice.
Hu B, Zhu C, Li F, Tang J, Wang Y, Lin A, Liu L, Che R, Chu C., Plant Physiol. 156(3), 2011
PMID: 21317339
Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites.
Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M., Plant J. 3(2), 1993
PMID: 8220446
Regulation of nitrate reductase expression in leaves by nitrate and nitrogen metabolism is completely overridden when sugars fall below a critical level
Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production.
Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Terce-Laforgue T, Quillere I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B., Plant Cell 18(11), 2006
PMID: 17138698
Metabolic implications of stress-induced proline accumulation in plants
Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants
Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth.
Yu B, Xu C, Benning C., Proc. Natl. Acad. Sci. U.S.A. 99(8), 2002
PMID: 11960029
Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition
Phosphate signaling in Arabidopsis and Oryza sativa
Fang Zhaoyuan, Shao Chuan, Meng Yijun, Wu Ping, Chen Ming., Plant Sci. 176(2), 2009
PMID: IND44141301
Homeostasis and transport of inorganic phosphate in plants
Regulation of phosphate homeostasis by MicroRNA in Arabidopsis.
Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL., Plant Cell 18(2), 2005
PMID: 16387831
Signaling Network in Sensing Phosphate Availability in Plants
Molecular mechanisms of phosphate transport in plants.
Rausch C, Bucher M., Planta 216(1), 2002
PMID: 12430011
Phosphate starvation responses are mediated by sugar signaling in Arabidopsis.
Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG., Planta 225(4), 2007
PMID: 17033812
The emerging importance of the SPX domain-containing proteins in phosphate homeostasis.
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J., New Phytol. 193(4), 2012
PMID: 22403821
Mapping the Arabidopsis organelle proteome.
Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS., Proc. Natl. Acad. Sci. U.S.A. 103(17), 2006
PMID: 16618929
Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation.
Lin SI, Santi C, Jobet E, Lacut E, El Kholti N, Karlowski WM, Verdeil JL, Breitler JC, Perin C, Ko SS, Guiderdoni E, Chiou TJ, Echeverria M., Plant Cell Physiol. 51(12), 2010
PMID: 21062869
Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate.
Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y., Plant J. 71(3), 2012
PMID: 22449068
Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux.
Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y., Plant J. 66(4), 2011
PMID: 21309867
A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.
Farquhar GD, von Caemmerer S, Berry JA., Planta 149(1), 1980
PMID: 24306196
A Biochemical Model of Photosynthetic CO 2 Assimilation in Leaves of C 3 Species
Improved method for the isolation of RNA from plant tissues.
Logemann J, Schell J, Willmitzer L., Anal. Biochem. 163(1), 1987
PMID: 2441623
OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize.
Colmsee C, Mascher M, Czauderna T, Hartmann A, Schluter U, Zellerhoff N, Schmitz J, Brautigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Bornke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber AP, Schreiber F, Scholz U, Sonnewald U., BMC Plant Biol. 12(), 2012
PMID: 23272737
Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry.
Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L., Plant J. 23(1), 2000
PMID: 10929108
Means and methods for analyzing a sample by means of chromatography-mass spectrometry
Determination of metabolite levels in specific cells and subcellular compartments of plant leaves

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 23822863
PubMed | Europe PMC

Suchen in

Google Scholar