Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants

Lundquist PK, Rosar C, Bräutigam A, Weber APM (2014)
Molecular Plant 7(1): 14-29.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.54 MB
Autor*in
Lundquist, Peter K.; Rosar, Christian; Bräutigam, AndreaUniBi ; Weber, Andreas P. M.
Abstract / Bemerkung
The development of a plant leaf is a meticulously orchestrated sequence of events producing a complex organ comprising diverse cell types. The reticulate class of leaf variegation mutants displays contrasting pigmentation between veins and interveinal regions due to specific aberrations in the development of mesophyll cells. Thus, the reticulate mutants offer a potent tool to investigate cell-type-specific developmental processes. The discovery that most mutants are affected in plastid-localized, metabolic pathways that are strongly expressed in vasculature-associated tissues implicates a crucial role for the bundle sheath and their chloroplasts in proper development of the mesophyll cells. Here, we review the reticulate mutants and their phenotypic characteristics, with a focus on those in Arabidopsis thaliana. Two alternative models have been put forward to explain the relationship between plastid metabolism and mesophyll cell development, which we call here the supply and the signaling hypotheses. We critically assess these proposed models and discuss their implications for leaf development and bundle sheath function in C3 species. The characterization of the reticulate mutants supports the significance of plastid retrograde signaling in cell development and highlights the significance of the bundle sheath in C3 photosynthesis.
Stichworte
reticulate; mesophyll; bundle sheath; development; intercellular; signaling; leaf variegation; plastid
Erscheinungsjahr
2014
Zeitschriftentitel
Molecular Plant
Band
7
Ausgabe
1
Seite(n)
14-29
ISSN
1674-2052
eISSN
1752-9867
Page URI
https://pub.uni-bielefeld.de/record/2915140

Zitieren

Lundquist PK, Rosar C, Bräutigam A, Weber APM. Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants. Molecular Plant. 2014;7(1):14-29.
Lundquist, P. K., Rosar, C., Bräutigam, A., & Weber, A. P. M. (2014). Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants. Molecular Plant, 7(1), 14-29. doi:10.1093/mp/sst133
Lundquist, Peter K., Rosar, Christian, Bräutigam, Andrea, and Weber, Andreas P. M. 2014. “Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants”. Molecular Plant 7 (1): 14-29.
Lundquist, P. K., Rosar, C., Bräutigam, A., and Weber, A. P. M. (2014). Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants. Molecular Plant 7, 14-29.
Lundquist, P.K., et al., 2014. Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants. Molecular Plant, 7(1), p 14-29.
P.K. Lundquist, et al., “Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants”, Molecular Plant, vol. 7, 2014, pp. 14-29.
Lundquist, P.K., Rosar, C., Bräutigam, A., Weber, A.P.M.: Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants. Molecular Plant. 7, 14-29 (2014).
Lundquist, Peter K., Rosar, Christian, Bräutigam, Andrea, and Weber, Andreas P. M. “Plastid Signals and the Bundle Sheath: Mesophyll Development in Reticulate Mutants”. Molecular Plant 7.1 (2014): 14-29.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
8a50c30a2642b3fc78b40d21d8cc6250


19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Retrograde Signals Navigate the Path to Chloroplast Development.
Hernández-Verdeja T, Strand Å., Plant Physiol 176(2), 2018
PMID: 29254985
Uncovering C4-like photosynthesis in C3 vascular cells.
Gao Z, Shen W, Chen G., J Exp Bot 69(15), 2018
PMID: 29684188
Ferredoxin/thioredoxin system plays an important role in the chloroplastic NADP status of Arabidopsis.
Hashida SN, Miyagi A, Nishiyama M, Yoshida K, Hisabori T, Kawai-Yamada M., Plant J 95(6), 2018
PMID: 29920827
Specialized Plastids Trigger Tissue-Specific Signaling for Systemic Stress Response in Plants.
Beltrán J, Wamboldt Y, Sanchez R, LaBrant EW, Kundariya H, Virdi KS, Elowsky C, Mackenzie SA., Plant Physiol 178(2), 2018
PMID: 30135097
The Arabidopsis phyB-9 Mutant Has a Second-Site Mutation in the VENOSA4 Gene That Alters Chloroplast Size, Photosynthetic Traits, and Leaf Growth.
Yoshida Y, Sarmiento-Mañús R, Yamori W, Ponce MR, Micol JL, Tsukaya H., Plant Physiol 178(1), 2018
PMID: 30194261
Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.
Lundquist PK, Mantegazza O, Stefanski A, Stühler K, Weber APM., Mol Plant 10(1), 2017
PMID: 27794502
Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data.
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber AP., J Exp Bot 68(2), 2017
PMID: 28043950
The Rubisco Chaperone BSD2 May Regulate Chloroplast Coverage in Maize Bundle Sheath Cells.
Salesse C, Sharwood R, Sakamoto W, Stern D., Plant Physiol 175(4), 2017
PMID: 29089394
Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 Gene Cause Leaf Reticulation.
Liang S, Qi Y, Zhao J, Li Y, Wang R, Shao J, Liu X, An L, Yu F., Front Plant Sci 8(), 2017
PMID: 29234332
TEMPRANILLO Reveals the Mesophyll as Crucial for Epidermal Trichome Formation.
Matías-Hernández L, Aguilar-Jaramillo AE, Osnato M, Weinstain R, Shani E, Suárez-López P, Pelaz S., Plant Physiol 170(3), 2016
PMID: 26802039
Plastid osmotic stress influences cell differentiation at the plant shoot apex.
Wilson ME, Mixdorf M, Berg RH, Haswell ES., Development 143(18), 2016
PMID: 27510974
Plants grow with a little help from their organelle friends.
Van Dingenen J, Blomme J, Gonzalez N, Inzé D., J Exp Bot 67(22), 2016
PMID: 27815330
Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs.
Staehr P, Löttgert T, Christmann A, Krueger S, Rosar C, Rolčík J, Novák O, Strnad M, Bell K, Weber AP, Flügge UI, Häusler RE., Front Plant Sci 5(), 2014
PMID: 24782872
Deconstructing Kranz anatomy to understand C4 evolution.
Lundgren MR, Osborne CP, Christin PA., J Exp Bot 65(13), 2014
PMID: 24799561
Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species.
Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Bräutigam A, Weber AP., Plant Cell 26(8), 2014
PMID: 25122153
Nucleobase and nucleoside transport and integration into plant metabolism.
Girke C, Daumann M, Niopek-Witz S, Möhlmann T., Front Plant Sci 5(), 2014
PMID: 25250038

124 References

Daten bereitgestellt von Europe PubMed Central.

Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis.
Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y., Proc. Natl. Acad. Sci. U.S.A. 104(46), 2007
PMID: 17989228
A mutational analysis of leaf morphogenesis in Arabidopsis thaliana.
Berna G, Robles P, Micol JL., Genetics 152(2), 1999
PMID: 10353913
Making leaves.
Byrne ME., Curr. Opin. Plant Biol. 15(1), 2011
PMID: 22079784
Venation pattern formation in Arabidopsis thaliana vegetative leaves.
Candela H, Martinez-Laborda A, Micol JL., Dev. Biol. 205(1), 1999
PMID: 9882508
A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions.
Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J., Plant Cell 14(11), 2002
PMID: 12417697
Intracellular signaling from plastid to nucleus.
Chi W, Sun X, Zhang L., Annu Rev Plant Biol 64(), 2013
PMID: 23394498
Plant extracellular ATP signalling: new insight from proteomics.
Chivasa S, Slabas AR., Mol Biosyst 8(2), 2011
PMID: 21979580
Extracellular ATP functions as an endogenous external metabolite regulating plant cell viability.
Chivasa S, Ndimba BK, Simon WJ, Lindsey K, Slabas AR., Plant Cell 17(11), 2005
PMID: 16199612
Can phylogenetics identify C(4) origins and reversals?
Christin PA, Freckleton RP, Osborne CP., Trends Ecol. Evol. (Amst.) 25(7), 2010
PMID: 20605250
Generation of active pools of abscisic acid revealed by in vivo imaging of water-stressed Arabidopsis.
Christmann A, Hoffmann T, Teplova I, Grill E, Muller A., Plant Physiol. 137(1), 2004
PMID: 15618419
Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant.
Conklin PL, Williams EH, Last RL., Proc. Natl. Acad. Sci. U.S.A. 93(18), 1996
PMID: 8790441
Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake.
Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL., Nature 409(6818), 2001
PMID: 11201743
Small RNA duplexes function as mobile silencing signals between plant cells.
Dunoyer P, Schott G, Himber C, Meyer D, Takeda A, Carrington JC, Voinnet O., Science 328(5980), 2010
PMID: 20413458
Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene.
Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ., Proc. Natl. Acad. Sci. U.S.A. 87(22), 1990
PMID: 11607118
Analysis of the expression of CLA1, a gene that encodes the 1-deoxyxylulose 5-phosphate synthase of the 2-C-methyl-D-erythritol-4-phosphate pathway in Arabidopsis.
Estevez JM, Cantero A, Romero C, Kawaide H, Jimenez LF, Kuzuyama T, Seto H, Kamiya Y, Leon P., Plant Physiol. 124(1), 2000
PMID: 10982425
A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter.
Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI., Plant Cell 9(3), 1997
PMID: 9090886
Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis.
Fischer WN, Kwart M, Hummel S, Frommer WB., J. Biol. Chem. 270(27), 1995
PMID: 7608199
The phosphoglycerate mutases.
Fothergill-Gilmore LA, Watson HC., Adv. Enzymol. Relat. Areas Mol. Biol. 62(), 1989
PMID: 2543188
Imaging of photo-oxidative stress responses in leaves.
Fryer MJ, Oxborough K, Mullineaux PM, Baker NR., J. Exp. Bot. 53(372), 2002
PMID: 11997373
The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells.
Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJ, Jones AM, Baker NR, Mullineaux PM., Plant Cell 21(7), 2009
PMID: 19638476
Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves.
Gonzalez-Bayon R, Kinsman EA, Quesada V, Vera A, Robles P, Ponce MR, Pyke KA, Micol JL., J. Exp. Bot. 57(12), 2006
PMID: 16873448
Characterisation of a new allele of pale cress and its role in greening in Arabidopsis thaliana.
Grevelding C, Suter-Crazzolara C, von Menges A, Kemper E, Masterson R, Schell J, Reiss B., Mol. Gen. Genet. 251(5), 1996
PMID: 8709959
Plant type ferredoxins and ferredoxin-dependent metabolism.
Hanke G, Mulo P., Plant Cell Environ. 36(6), 2013
PMID: 23190083
Nitric oxide represses the Arabidopsis floral transition.
He Y, Tang RH, Hao Y, Stevens RD, Cook CW, Ahn SM, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson RB, Crawford NM, Pei ZM., Science 305(5692), 2004
PMID: 15448272
Developmental control of H+/amino acid permease gene expression during seed development of Arabidopsis.
Hirner B, Fischer WN, Rentsch D, Kwart M, Frommer WB., Plant J. 14(5), 1998
PMID: 9675899
Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development.
Horiguchi G, Molla-Morales A, Perez-Perez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H., Plant J. 65(5), 2011
PMID: 21251100
Characterization of Arabidopsis glutamine phosphoribosyl pyrophosphate amidotransferase-deficient mutants.
Hung WF, Chen LJ, Boldt R, Sun CW, Li HM., Plant Physiol. 135(3), 2004
PMID: 15266056
Photosynthesis in cells around veins of the C(3) plant Arabidopsis thaliana is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness.
Janacek SH, Trenkamp S, Palmer B, Brown NJ, Parsley K, Stanley S, Astley HM, Rolfe SA, Paul Quick W, Fernie AR, Hibberd JM., Plant J. 59(2), 2009
PMID: 19302417
Tryptophan deficiency affects organ growth by retarding cell expansion in Arabidopsis.
Jing Y, Cui D, Bao F, Hu Z, Qin Z, Hu Y., Plant J. 57(3), 2008
PMID: 18980661
Cell-specific mechanisms and systemic signalling as emerging themes in light acclimation of C3 plants.
Kangasjarvi S, Nurmi M, Tikkanen M, Aro EM., Plant Cell Environ. 32(9), 2009
PMID: 19344335
Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor.
Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M., Proc. Natl. Acad. Sci. U.S.A. 109(24), 2012
PMID: 22645333
Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis.
Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P., Science 284(5414), 1999
PMID: 10213690
Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis.
Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T., Plant Physiol. 134(4), 2004
PMID: 15064376
Bundle-sheath defective, a mutation that disrupts cellular-differentiation in maize leaves
Langdale, Development 120(), 1994
Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana.
Last RL, Fink GR., Science 240(4850), 1988
PMID: 17796738
Roles of the bundle sheath cells in leaves of C3 plants.
Leegood RC., J. Exp. Bot. 59(7), 2008
PMID: 18353763
Large-scale phenotyping of transgenic tobacco plants (Nicotiana tabacum) to identify essential leaf functions.
Lein W, Usadel B, Stitt M, Reindl A, Ehrhardt T, Sonnewald U, Bornke F., Plant Biotechnol. J. 6(3), 2007
PMID: 18086234
Chloroplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis.
Lepisto A, Kangasjarvi S, Luomala EM, Brader G, Sipari N, Keranen M, Keinanen M, Rintamaki E., Plant Physiol. 149(3), 2009
PMID: 19151130
Comparison of the contents of sucrose and amino acids in the leaves, phloem sap and taproots of high and low sugar-producing hybrids of sugar beet (Beta vulgaris L.)
Lohaus, J. Exp. Bot 45(), 1994
The shikimate pathway and aromatic amino Acid biosynthesis in plants.
Maeda H, Dudareva N., Annu Rev Plant Biol 63(), 2012
PMID: 22554242
Small post-translationally modified Peptide signals in Arabidopsis.
Matsubayashi Y., Arabidopsis Book 9(), 2011
PMID: 22303274
Roles and regulation of cytokinins in tomato fruit development.
Matsuo S, Kikuchi K, Fukuda M, Honda I, Imanishi S., J. Exp. Bot. 63(15), 2012
PMID: 22865911
NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts.
Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P., Proc. Natl. Acad. Sci. U.S.A. 106(24), 2009
PMID: 19470473
CYTOKININ METABOLISM AND ACTION.
Mok DW, Mok MC., Annu. Rev. Plant Physiol. Plant Mol. Biol. 52(), 2001
PMID: 11337393
Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development.
Molla-Morales A, Sarmiento-Manus R, Robles P, Quesada V, Perez-Perez JM, Gonzalez-Bayon R, Hannah MA, Willmitzer L, Ponce MR, Micol JL., Plant J. 65(3), 2010
PMID: 21265888
Thioredoxin targets in plants: the first 30 years.
Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB., J Proteomics 72(3), 2008
PMID: 19135183
The Chloroplast Function Database II: a comprehensive collection of homozygous mutants and their phenotypic/genotypic traits for nuclear-encoded chloroplast proteins.
Myouga F, Akiyama K, Tomonaga Y, Kato A, Sato Y, Kobayashi M, Nagata N, Sakurai T, Shinozaki K., Plant Cell Physiol. 54(2), 2012
PMID: 23230006
Abscisic acid biosynthesis and catabolism.
Nambara E, Marion-Poll A., Annu Rev Plant Biol 56(), 2005
PMID: 15862093
Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid.
Normanly J, Cohen JD, Fink GR., Proc. Natl. Acad. Sci. U.S.A. 90(21), 1993
PMID: 8234297
Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants.
Overmyer K, Kollist H, Tuominen H, Betz C, Langebartels C, Wingsle G, Kangasjarvi S, Brader G, Mullineaux P, Kangasjarvi J., Plant Cell Environ. 31(9), 2008
PMID: 18518918
Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family.
Perez-Perez JM, Esteve-Bruna D, Gonzalez-Bayon R, Kangasjarvi S, Caldana C, Hannah MA, Willmitzer L, Ponce MR, Micol JL., Plant Physiol. 162(2), 2013
PMID: 23596191
Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.
Perez-Ruiz JM, Spinola MC, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo FJ., Plant Cell 18(9), 2006
PMID: 16891402
Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana--roles of glutamate synthases and carbamoylphosphate synthetase in leaves.
Potel F, Valadier MH, Ferrario-Mery S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein SJ, Hirose N, Suzuki A., FEBS J. 276(15), 2009
PMID: 19555410
Temporal and spatial development of the cells of the expanding first leaf of Arabidopsis thaliana (L.) Heynh
Pyke, J. Exp. Bot 42(), 1991
Characterization of tryptophan synthase alpha subunit mutants of Arabidopsis thaliana.
Radwanski ER, Barczak AJ, Last RL., Mol. Gen. Genet. 253(3), 1996
PMID: 9003322
Linkage studies
Rédei, Arabidopsis Information Service 1(), 1964
Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis.
Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintamaki E, Grimm B., Plant Physiol. 162(1), 2013
PMID: 23569108
Chloroplast NADPH thioredoxin reductase: a novel modulator of plastidial amino acid and hormone metabolism
Rintamäki, 2008
Tyrosine and phenylalanine are synthesized within the plastids in Arabidopsis.
Rippert P, Puyaubert J, Grisollet D, Derrier L, Matringe M., Plant Physiol. 149(3), 2009
PMID: 19136569
Pathways of plastid-to-nucleus signaling.
Rodermel S., Trends Plant Sci. 6(10), 2001
PMID: 11590066
The leaf reticulate mutant dov1 is impaired in the first step of purine metabolism.
Rosar C, Kanonenberg K, Nanda AM, Mielewczik M, Brautigam A, Novak O, Strnad M, Walter A, Weber AP., Mol Plant 5(6), 2012
PMID: 22532604
An allelic series of blue fluorescent trp1 mutants of Arabidopsis thaliana.
Rose AB, Li J, Last RL., Genetics 145(1), 1997
PMID: 9017401
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.
Schmid MW, Schmidt A, Klostermeier UC, Barann M, Rosenstiel P, Grossniklaus U., PLoS ONE 7(1), 2012
PMID: 22291893
The ferredoxin/thioredoxin system of oxygenic photosynthesis.
Schurmann P, Buchanan BB., Antioxid. Redox Signal. 10(7), 2008
PMID: 18377232
Genes, enzymes and regulation of arginine biosynthesis in plants.
Slocum RD., Plant Physiol. Biochem. 43(8), 2005
PMID: 16122935
Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation.
Smith PM, Atkins CA., Plant Physiol. 128(3), 2002
PMID: 11891236
NTRC new ways of using NADPH in the chloroplast
Spinola MC, Perez-Ruiz JM, Pulido P, Kirchsteiger K, Guinea M, Gonzalez M, Cejudo FJ., Physiol Plant 133(3), 2008
PMID: IND44069757
NADPH-dependent thioredoxin reductase and 2-Cys peroxiredoxins are needed for the protection of Mg-protoporphyrin monomethyl ester cyclase.
Stenbaek A, Hansson A, Wulff RP, Hansson M, Dietz KJ, Jensen PE., FEBS Lett. 582(18), 2008
PMID: 18625226
The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.
Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge UI, Chory J., Plant Cell 11(9), 1999
PMID: 10488230
The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco
Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K, Martin C., Plant Cell 10(2), 1998
PMID: 9490739
Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants
Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang CF, Lynn D, Dow JM, Roberts K, Martin C., Plant Cell 10(11), 1998
PMID: 9811790
Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures.
Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN., Plant Physiol. 97(1), 1991
PMID: 16668384
Molecular analysis of ‘de novo’ purine biosynthesis in solanaceous species and in Arabidopsis thaliana
van, Front. Biosci 9(), 2004
Interacting glutamate receptor-like proteins in Phloem regulate lateral root initiation in Arabidopsis.
Vincill ED, Clarin AE, Molenda JN, Spalding EP., Plant Cell 25(4), 2013
PMID: 23590882
The phenotype of the Arabidopsis cue1 mutant is not simply caused by a general restriction of the shikimate pathway.
Voll L, Hausler RE, Hecker R, Weber A, Weissenbock G, Fiene G, Waffenschmidt S, Flugge UI., Plant J. 36(3), 2003
PMID: 14617088
The Arabidopsis phenylalanine insensitive growth mutant exhibits a deregulated amino acid metabolism.
Voll LM, Allaire EE, Fiene G, Weber AP., Plant Physiol. 136(2), 2004
PMID: 15448200
Phloem Transport of Amino Acids in Relation to their Cytosolic Levels in Barley Leaves.
Winter H, Lohaus G, Heldt HW., Plant Physiol. 99(3), 1992
PMID: 16669030
Arabidopsis KNOXI proteins activate cytokinin biosynthesis.
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N., Curr. Biol. 15(17), 2005
PMID: 16139212
Stem cell activation by light guides plant organogenesis.
Yoshida S, Mandel T, Kuhlemeier C., Genes Dev. 25(13), 2011
PMID: 21724835
Variegation mutants and mechanisms of chloroplast biogenesis.
Yu F, Fu A, Aluru M, Park S, Xu Y, Liu H, Liu X, Foudree A, Nambogga M, Rodermel S., Plant Cell Environ. 30(3), 2007
PMID: 17263779
Hormonal control of the shoot stem-cell niche.
Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU., Nature 465(7301), 2010
PMID: 20577215
Pyrimidine and purine biosynthesis and degradation in plants.
Zrenner R, Stitt M, Sonnewald U, Boldt R., Annu Rev Plant Biol 57(), 2006
PMID: 16669783
Sorting signals, N-terminal modifications and abundance of the chloroplast proteome
Zybailov, PLoS One 3(), 2008
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 24046062
PubMed | Europe PMC

Suchen in

Google Scholar