The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria

Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U (2014)
eLife 3: e02478.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.16 MB
Autor*in
Mallmann, Julia; Heckmann, David; Bräutigam, AndreaUniBi ; Lercher, Martin J.; Weber, Andreas P. M.; Westhoff, Peter; Gowik, Udo
Abstract / Bemerkung
C-4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C-2 photosynthesis) is a prerequisite for the evolution of C-4. However, a mechanistic model explaining the tight connection between the evolution of C-4 and C-2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C-3, C-3-C-4, and C-4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C-2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires an anaplerotic carbon cycle that resembles at least parts of a basic C-4 cycle. Our findings thus show how C-2 photosynthesis represents a pre-adaptation for the C-4 system, where the evolution of the C-2 system establishes important C-4 components as a side effect.
Erscheinungsjahr
2014
Zeitschriftentitel
eLife
Band
3
Art.-Nr.
e02478
ISSN
2050-084X
Page URI
https://pub.uni-bielefeld.de/record/2915138

Zitieren

Mallmann J, Heckmann D, Bräutigam A, et al. The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. eLife. 2014;3: e02478.
Mallmann, J., Heckmann, D., Bräutigam, A., Lercher, M. J., Weber, A. P. M., Westhoff, P., & Gowik, U. (2014). The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. eLife, 3, e02478. doi:10.7554/eLife.02478
Mallmann, J., Heckmann, D., Bräutigam, A., Lercher, M. J., Weber, A. P. M., Westhoff, P., and Gowik, U. (2014). The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. eLife 3:e02478.
Mallmann, J., et al., 2014. The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. eLife, 3: e02478.
J. Mallmann, et al., “The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria”, eLife, vol. 3, 2014, : e02478.
Mallmann, J., Heckmann, D., Bräutigam, A., Lercher, M.J., Weber, A.P.M., Westhoff, P., Gowik, U.: The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria. eLife. 3, : e02478 (2014).
Mallmann, Julia, Heckmann, David, Bräutigam, Andrea, Lercher, Martin J., Weber, Andreas P. M., Westhoff, Peter, and Gowik, Udo. “The role of photorespiration during the evolution of C-4 photosynthesis in the genus Flaveria”. eLife 3 (2014): e02478.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
6f8b1436244e17d2cc513244772eead4

49 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of alanine and aspartate aminotransferases in C4 photosynthesis.
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30126035
Efficient 2-phosphoglycolate degradation is required to maintain carbon assimilation and allocation in the C4 plant Flaveria bidentis.
Levey M, Timm S, Mettler-Altmann T, Luca Borghi G, Koczor M, Arrivault S, Pm Weber A, Bauwe H, Gowik U, Westhoff P., J Exp Bot 70(2), 2019
PMID: 30357386
Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata.
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA., J Exp Bot 70(12), 2019
PMID: 30949663
Integration of sulfate assimilation with carbon and nitrogen metabolism in transition from C3 to C4 photosynthesis.
Jobe TO, Zenzen I, Rahimzadeh Karvansara P, Kopriva S., J Exp Bot 70(16), 2019
PMID: 31124557
Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis.
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA., Mol Biol Evol 35(1), 2018
PMID: 29040657
Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis.
Bianconi ME, Dunning LT, Moreno-Villena JJ, Osborne CP, Christin PA., J Exp Bot 69(8), 2018
PMID: 29394370
Natural Variation within a Species for Traits Underpinning C4 Photosynthesis.
Reeves G, Singh P, Rossberg TA, Sogbohossou EOD, Schranz ME, Hibberd JM., Plant Physiol 177(2), 2018
PMID: 29678862
Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R., J Exp Bot 69(14), 2018
PMID: 29529246
Some like it hot: the physiological ecology of C4 plant evolution.
Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW., Oecologia 187(4), 2018
PMID: 29955992
Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants.
Li Y, Heckmann D, Lercher MJ, Maurino VG., J Exp Bot 68(2), 2017
PMID: 27660481
C4 photosynthesis in C3 rice: a theoretical analysis of biochemical and anatomical factors.
Wang S, Tholen D, Zhu XG., Plant Cell Environ 40(1), 2017
PMID: 27628301
Photosynthesis in C3-C4 intermediate Moricandia species.
Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber AP., J Exp Bot 68(2), 2017
PMID: 28110276
Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation.
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M., J Exp Bot 68(2), 2017
PMID: 27834209
Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria.
Kümpers BM, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM., J Exp Bot 68(2), 2017
PMID: 28062590
Engineering central metabolism - a grand challenge for plant biologists.
Sweetlove LJ, Nielsen J, Fernie AR., Plant J 90(4), 2017
PMID: 28004455
On the Evolutionary Origin of CAM Photosynthesis.
Bräutigam A, Schlüter U, Eisenhut M, Gowik U., Plant Physiol 174(2), 2017
PMID: 28416703
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA., Evolution 71(6), 2017
PMID: 28395112
An rbcL mRNA-binding protein is associated with C3 to C4 evolution and light-induced production of Rubisco in Flaveria.
Yerramsetty P, Agar EM, Yim WC, Cushman JC, Berry JO., J Exp Bot 68(16), 2017
PMID: 28981775
Recruitment of pre-existing networks during the evolution of C4 photosynthesis.
Reyna-Llorens I, Hibberd JM., Philos Trans R Soc Lond B Biol Sci 372(1730), 2017
PMID: 28808102
The Road to C4 Photosynthesis: Evolution of a Complex Trait via Intermediary States.
Schlüter U, Weber AP., Plant Cell Physiol 57(5), 2016
PMID: 26893471
Metabolic Network Constrains Gene Regulation of C4 Photosynthesis: The Case of Maize.
Robaina-Estévez S, Nikoloski Z., Plant Cell Physiol 57(5), 2016
PMID: 26903529
Photorespiration connects C3 and C4 photosynthesis.
Bräutigam A, Gowik U., J Exp Bot 67(10), 2016
PMID: 26912798
Photorespiratory glycolate-glyoxylate metabolism.
Dellero Y, Jossier M, Schmitz J, Maurino VG, Hodges M., J Exp Bot 67(10), 2016
PMID: 26994478
Finding the genes to build C4 rice.
Wang P, Vlad D, Langdale JA., Curr Opin Plant Biol 31(), 2016
PMID: 27055266
Passive CO2 concentration in higher plants.
Sage RF, Khoshravesh R., Curr Opin Plant Biol 31(), 2016
PMID: 27058940
A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis.
Huang P, Brutnell TP., Curr Opin Plant Biol 31(), 2016
PMID: 27078208
C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis.
Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL., J Exp Bot 67(10), 2016
PMID: 27073202
Tracking the evolutionary rise of C4 metabolism.
Sage RF., J Exp Bot 67(10), 2016
PMID: 27085185
Photorespiration: origins and metabolic integration in interacting compartments.
Hagemann M, Weber AP, Eisenhut M., J Exp Bot 67(10), 2016
PMID: PMC4867902
Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology.
Gonçalves RN, Gozzini Barbosa SD, da Silva-López RE., Biotechnol Res Int 2016(), 2016
PMID: 27630776
Photorespiration and the potential to improve photosynthesis.
Hagemann M, Bauwe H., Curr Opin Chem Biol 35(), 2016
PMID: 27693890
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson JK, Bianconi M, Besnard G, Dunning LT, Lundgren MR, Holota H, Vorontsova MS, Hidalgo O, Leitch IJ, Nosil P, Osborne CP, Christin PA., Mol Ecol 25(24), 2016
PMID: 27862505
Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
Christin PA, Arakaki M, Osborne CP, Edwards EJ., Mol Biol Evol 32(4), 2015
PMID: 25582594
Discovering New Biology through Sequencing of RNA.
Weber AP., Plant Physiol 169(3), 2015
PMID: 26353759
Inference and Prediction of Metabolic Network Fluxes.
Nikoloski Z, Perez-Storey R, Sweetlove LJ., Plant Physiol 169(3), 2015
PMID: 26392262
Plant sulfur and Big Data.
Kopriva S, Calderwood A, Weckopp SC, Koprivova A., Plant Sci 241(), 2015
PMID: 26706053
Evolution of the Phosphoenolpyruvate Carboxylase Protein Kinase Family in C3 and C4 Flaveria spp.
Aldous SH, Weise SE, Sharkey TD, Waldera-Lupa DM, Stühler K, Mallmann J, Groth G, Gowik U, Westhoff P, Arsova B., Plant Physiol 165(3), 2014
PMID: 24850859
The inevitability of C4 photosynthesis.
Edwards EJ., Elife 3(), 2014
PMID: 25052081
The evolutionary ecology of C4 plants.
Christin PA, Osborne CP., New Phytol 204(4), 2014
PMID: 25263843

73 References

Daten bereitgestellt von Europe PubMed Central.

Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases.
Anderson LE., Biochim. Biophys. Acta 235(1), 1971
PMID: 5089710
The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway.
Aubry S, Brown NJ, Hibberd JM., J. Exp. Bot. 62(9), 2011
PMID: 21321052
Photosynthetic enzyme activities and immunofluorescence studies on the localization of ribulose-1, 5-bisphosphate carboxylase/oxygenase in leaves of C3, C4, and C3−C4 intermediate species of Flaveria (Asteraceae)
Bauwe H., 1984
Photorespiration: the bridge to C4 photosynthesis
Bauwe H., 2011
Photorespiration: players, partners and origin.
Bauwe H, Hagemann M, Fernie AR., Trends Plant Sci. 15(6), 2010
PMID: 20403720
Genetic manipulation of glycine decarboxylation.
Bauwe H, Kolukisaoglu U., J. Exp. Bot. 54(387), 2003
PMID: 12730263
Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase.
Bowes G, Ogren WL, Hageman RH., Biochem. Biophys. Res. Commun. 45(3), 1971
PMID: 4331471
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.
Brown NJ, Palmer BG, Stanley S, Hajaji H, Janacek SH, Astley HM, Parsley K, Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG, Hibberd JM., Plant J. 61(1), 2009
PMID: 19807880
C(4) eudicots are not younger than C(4) monocots.
Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21393383
C4GEM, a genome-scale metabolic model to study C4 plant metabolism.
Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK., Plant Physiol. 154(4), 2010
PMID: 20974891

Darwin C., 1872
Leaf structure and development in C4 plants
Dengler NG, Nelson T., 1999
Biochemistry of C3-C4 intermediates
Edwards GE, Ku MS., 1987
Climate change and the evolution of C(4) photosynthesis.
Ehleringer JR, Sage RF, Flanagan LB, Pearcy RW., Trends Ecol. Evol. (Amst.) 6(3), 1991
PMID: 21232434
Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient CO₂ levels.
Eisenhut M, Planchais S, Cabassa C, Guivarc'h A, Justin AM, Taconnat L, Renou JP, Linka M, Gagneul D, Timm S, Bauwe H, Carol P, Weber AP., Plant J. 73(5), 2013
PMID: 23181524
Perspectives on plant photorespiratory metabolism.
Fernie AR, Bauwe H, Eisenhut M, Florian A, Hanson DT, Hagemann M, Keech O, Mielewczik M, Nikoloski Z, Peterhansel C, Roje S, Sage R, Timm S, von Cammerer S, Weber AP, Westhoff P., Plant Biol (Stuttg) 15(4), 2012
PMID: 23231538
A plastidial sodium-dependent pyruvate transporter.
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Brautigam A, Weber AP, Izui K., Nature 476(7361), 2011
PMID: 21866161
Sybil--efficient constraint-based modelling in R.
Gelius-Dietrich G, Desouki AA, Fritzemeier CJ, Lercher MJ., BMC Syst Biol 7(), 2013
PMID: 24224957
Exaptation-a missing term in the science of form
Gould SJ, Vrba ES., 1982
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644

Haberlandt G., 1904
C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure
Hatch MD., 1987
Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features
Hatch M, Kagawa T, Craig S., 1975
Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape.
Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ., Cell 153(7), 2013
PMID: 23791184
Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C 4 intermediate species.
Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW., Planta 175(4), 1988
PMID: 24221925
BLAT--the BLAST-like alignment tool.
Kent WJ., Genome Res. 12(4), 2002
PMID: 11932250
The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism.
Kinoshita H, Nagasaki J, Yoshikawa N, Yamamoto A, Takito S, Kawasaki M, Sugiyama T, Miyake H, Weber APM, Taniguchi M., Plant J. 65(1), 2010
PMID: 21175886
Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation.
Krogmann DW, Jagendorf AT, Avron M., Plant Physiol. 34(3), 1959
PMID: 16655214
Photosynthetic and photorespiratory characteristics of flaveria species.
Ku MS, Wu J, Dai Z, Scott RA, Chu C, Edwards GE., Plant Physiol. 96(2), 1991
PMID: 16668217
The regulation and control of photorespiration
Leegood RC, Lea PJ, Adcock MD, Häusler RE., 1995
Data from: the role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria
Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U., 2014
Phylogeny of Flaveria (Asteraceae) and inference of C₄ photosynthesis evolution.
McKown AthenaD, Moncalvo Jean-Marc, Dengler NancyG., Am. J. Bot. 92(11), 2005
PMID: IND43756077
The roles of malate and aspartate in C4 photosynthetic metabolism of Flaveria bidentis (L.)
Meister M, Agostino A, Hatch MD., 1996
CO2 assimilation in C3-C4 intermediate plants
Monson R, Rawsthorne S., 2000
C4 photosynthesis and light-dependent accumulation of inorganic carbon in leaves of C3−C4 and C4 Flaveria species
Moore B, Ku M, Edwards G., 1987
Isolation of leaf bundle sheath protoplasts from C4 dicot species and intracellular localization of selected enzymes
Moore BD, Ku MS, Edwards GE., 1984
Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera
Morgan CL, Turner SR, Rawsthorne S., 1993
Photorespiration: pathways, regulation, and Modification
Ogren WL., 1984
Photorespiration.
Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kurkcuoglu S, Kreuzaler F., Arabidopsis Book 8(), 2010
PMID: 22303256
PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters.
Pick TR, Brautigam A, Schulz MA, Obata T, Fernie AR, Weber AP., Proc. Natl. Acad. Sci. U.S.A. 110(8), 2013
PMID: 23382251
Systematics of Flaveria (Flaveriinae-Asteraceae)
Powell AM., Ann. Mo. Bot. Gard. 65(2), 1978
PMID: IND79008553
R: a language and environment for statistical computing
AUTHOR UNKNOWN, 2013
The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2.
Renne P, Dressen U, Hebbeker U, Hille D, Flugge UI, Westhoff P, Weber AP., Plant J. 35(3), 2003
PMID: 12887583
Environmental and evolutionary preconditionsfor the origin and diversification of the C4 photosyntheticsyndrome
Sage RF., 2001
The evolution of C4 photosynthesis.
Sage RF., New Phytol. 161(2), 2004
PMID: IND43668189
Photorespiratory compensation: a driver for biological diversity.
Sage RF., Plant Biol (Stuttg) 15(4), 2013
PMID: 23656429
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
Photorespiration and the evolution of C4 photosynthesis.
Sage RF, Sage TL, Kocacinar F., Annu Rev Plant Biol 63(), 2012
PMID: 22404472
Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria.
Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M, Sultmanis S, Rahman BA, Rawsthorne S, Sage RF., Plant Physiol. 163(3), 2013
PMID: 24064930
Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.
Schulz MH, Zerbino DR, Vingron M, Birney E., Bioinformatics 28(8), 2012
PMID: 22368243
Evolution of C4 photosynthesis in the genus flaveria: establishment of a photorespiratory CO2 pump.
Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P., Plant Cell 25(7), 2013
PMID: 23847152
Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation.
Shen Y, Khanna R, Carle CM, Quail PH., Plant Physiol. 145(3), 2007
PMID: 17827270

von S., 2000
A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis.
Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG., Plant Physiol. 139(1), 2005
PMID: 16113210
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis.
Williams BP, Johnston IG, Covshoff S, Hibberd JM., Elife 2(), 2013
PMID: 24082995
Analysis of Arabidopsis with highly reduced levels of malate and fumarate sheds light on the role of these organic acids as storage carbon molecules.
Zell MB, Fahnenstich H, Maier A, Saigo M, Voznesenskaya EV, Edwards GE, Andreo C, Schleifenbaum F, Zell C, Drincovich MF, Maurino VG., Plant Physiol. 152(3), 2010
PMID: 20107023

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 24935935
PubMed | Europe PMC

Suchen in

Google Scholar