Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism

Christin P-A, Arakaki M, Osborne CP, Bräutigam A, Sage RF, Hibberd JM, Kelly S, Covshoff S, Wong GK-S, Hancock L, Edwards EJ (2014)
Journal of Experimental Botany 65(13): 3609-3621.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 2.37 MB
Christin, Pascal-Antoine; Arakaki, Monica; Osborne, Colin P.; Bräutigam, AndreaUniBi ; Sage, Rowan F.; Hibberd, Julian M.; Kelly, Steven; Covshoff, Sarah; Wong, Gane Ka-Shu; Hancock, Lillian; Edwards, Erika J.
Abstract / Bemerkung
CAM and C-4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C-4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C-4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C-4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C-4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C-4 in these species. The similar origin of PEPC and other genes involved in the CAM and C-4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C-4, which probably diverged irreversibly only during the optimization of CAM and C-4 phenotypes.
C-4 photosynthesis; CAM photosynthesis; co-option; evolution; phosphoenolpyruvate carboxylase (PEPC); phylogenetics
Journal of Experimental Botany
Page URI


Christin P-A, Arakaki M, Osborne CP, et al. Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism. Journal of Experimental Botany. 2014;65(13):3609-3621.
Christin, P. - A., Arakaki, M., Osborne, C. P., Bräutigam, A., Sage, R. F., Hibberd, J. M., Kelly, S., et al. (2014). Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism. Journal of Experimental Botany, 65(13), 3609-3621. doi:10.1093/jxb/eru087
Christin, Pascal-Antoine, Arakaki, Monica, Osborne, Colin P., Bräutigam, Andrea, Sage, Rowan F., Hibberd, Julian M., Kelly, Steven, et al. 2014. “Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism”. Journal of Experimental Botany 65 (13): 3609-3621.
Christin, P. - A., Arakaki, M., Osborne, C. P., Bräutigam, A., Sage, R. F., Hibberd, J. M., Kelly, S., Covshoff, S., Wong, G. K. - S., Hancock, L., et al. (2014). Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism. Journal of Experimental Botany 65, 3609-3621.
Christin, P.-A., et al., 2014. Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism. Journal of Experimental Botany, 65(13), p 3609-3621.
P.-A. Christin, et al., “Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism”, Journal of Experimental Botany, vol. 65, 2014, pp. 3609-3621.
Christin, P.-A., Arakaki, M., Osborne, C.P., Bräutigam, A., Sage, R.F., Hibberd, J.M., Kelly, S., Covshoff, S., Wong, G.K.-S., Hancock, L., Edwards, E.J.: Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism. Journal of Experimental Botany. 65, 3609-3621 (2014).
Christin, Pascal-Antoine, Arakaki, Monica, Osborne, Colin P., Bräutigam, Andrea, Sage, Rowan F., Hibberd, Julian M., Kelly, Steven, Covshoff, Sarah, Wong, Gane Ka-Shu, Hancock, Lillian, and Edwards, Erika J. “Shared origins of a key enzyme during the evolution of C-4 and CAM metabolism”. Journal of Experimental Botany 65.13 (2014): 3609-3621.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

32 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

C4-like photosynthesis and the effects of leaf senescence on C4-like physiology in Sesuvium sesuvioides (Aizoaceae).
Bohley K, Schröder T, Kesselmeier J, Ludwig M, Kadereit G., J Exp Bot 70(5), 2019
PMID: 30689935
Altered Gene Regulatory Networks Are Associated With the Transition From C3 to Crassulacean Acid Metabolism in Erycina (Oncidiinae: Orchidaceae).
Heyduk K, Hwang M, Albert V, Silvera K, Lan T, Farr K, Chang TH, Chan MT, Winter K, Leebens-Mack J., Front Plant Sci 9(), 2018
PMID: 30745906
Crassulacean acid metabolism in the Basellaceae (Caryophyllales).
Holtum JAM, Hancock LP, Edwards EJ, Winter K., Plant Biol (Stuttg) 20(3), 2018
PMID: 29369469
Molecular evolution of key metabolic genes during transitions to C4 and CAM photosynthesis.
Goolsby EW, Moore AJ, Hancock LP, De Vos JM, Edwards EJ., Am J Bot 105(3), 2018
PMID: 29660114
Identification of the allosteric site for neutral amino acids in the maize C4 isozyme of phosphoenolpyruvate carboxylase: The critical role of Ser-100.
González-Segura L, Mújica-Jiménez C, Juárez-Díaz JA, Güémez-Toro R, Martinez-Castilla LP, Muñoz-Clares RA., J Biol Chem 293(26), 2018
PMID: 29743237
Some like it hot: the physiological ecology of C4 plant evolution.
Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW., Oecologia 187(4), 2018
PMID: 29955992
Diel rewiring and positive selection of ancient plant proteins enabled evolution of CAM photosynthesis in Agave.
Yin H, Guo HB, Weston DJ, Borland AM, Ranjan P, Abraham PE, Jawdy SS, Wachira J, Tuskan GA, Tschaplinski TJ, Wullschleger SD, Guo H, Hettich RL, Gross SM, Wang Z, Visel A, Yang X., BMC Genomics 19(1), 2018
PMID: 30081833
Optional use of CAM photosynthesis in two C4 species, Portulaca cyclophylla and Portulaca digyna.
Holtum JAM, Hancock LP, Edwards EJ, Winter K., J Plant Physiol 214(), 2017
PMID: 28511087
Loss of the Chloroplast Transit Peptide from an Ancestral C3 Carbonic Anhydrase Is Associated with C4 Evolution in the Grass Genus Neurachne.
Clayton H, Saladié M, Rolland V, Sharwood R, Macfarlane T, Ludwig M., Plant Physiol 173(3), 2017
PMID: 28153918
Secrets of succulence.
Males J., J Exp Bot 68(9), 2017
PMID: 28369497
On the Evolutionary Origin of CAM Photosynthesis.
Bräutigam A, Schlüter U, Eisenhut M, Gowik U., Plant Physiol 174(2), 2017
PMID: 28416703
Evolutionary history of PEPC genes in green plants: Implications for the evolution of CAM in orchids.
Deng H, Zhang LS, Zhang GQ, Zheng BQ, Liu ZJ, Wang Y., Mol Phylogenet Evol 94(pt b), 2016
PMID: 26493226
Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.
Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber AP., Plant Physiol 170(1), 2016
PMID: 26530316
Emerging model systems for functional genomics analysis of Crassulacean acid metabolism.
Hartwell J, Dever LV, Boxall SF., Curr Opin Plant Biol 31(), 2016
PMID: 27082281
Photosynthetic diversity meets biodiversity: the C4 plant example.
Sage RF, Stata M., J Plant Physiol 172(), 2015
PMID: 25264020
Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
Christin PA, Arakaki M, Osborne CP, Edwards EJ., Mol Biol Evol 32(4), 2015
PMID: 25582594
Analysis and elucidation of phosphoenolpyruvate carboxylase in cyanobacteria.
Shylajanaciyar M, Dineshbabu G, Rajalakshmi R, Subramanian G, Prabaharan D, Uma L., Protein J 34(1), 2015
PMID: 25586080
Dissecting Molecular Evolution in the Highly Diverse Plant Clade Caryophyllales Using Transcriptome Sequencing.
Yang Y, Moore MJ, Brockington SF, Soltis DE, Wong GK, Carpenter EJ, Zhang Y, Chen L, Yan Z, Xie Y, Sage RF, Covshoff S, Hibberd JM, Nelson MN, Smith SA., Mol Biol Evol 32(8), 2015
PMID: 25837578
Crassulacean acid metabolism: a continuous or discrete trait?
Winter K, Holtum JA, Smith JA., New Phytol 208(1), 2015
PMID: 25975197
A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world.
Yang X, Cushman JC, Borland AM, Edwards EJ, Wullschleger SD, Tuskan GA, Owen NA, Griffiths H, Smith JA, De Paoli HC, Weston DJ, Cottingham R, Hartwell J, Davis SC, Silvera K, Ming R, Schlauch K, Abraham P, Stewart JR, Guo HB, Albion R, Ha J, Lim SD, Wone BW, Yim WC, Garcia T, Mayer JA, Petereit J, Nair SS, Casey E, Hettich RL, Ceusters J, Ranjan P, Palla KJ, Yin H, Reyes-García C, Andrade JL, Freschi L, Beltrán JD, Dever LV, Boxall SF, Waller J, Davies J, Bupphada P, Kadu N, Winter K, Sage RF, Aguilar CN, Schmutz J, Jenkins J, Holtum JA., New Phytol 207(3), 2015
PMID: 26153373
The pineapple genome and the evolution of CAM photosynthesis.
Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang ML, Chen J, Biggers E, Zhang J, Huang L, Zhang L, Miao W, Zhang J, Ye Z, Miao C, Lin Z, Wang H, Zhou H, Yim WC, Priest HD, Zheng C, Woodhouse M, Edger PP, Guyot R, Guo HB, Guo H, Zheng G, Singh R, Sharma A, Min X, Zheng Y, Lee H, Gurtowski J, Sedlazeck FJ, Harkess A, McKain MR, Liao Z, Fang J, Liu J, Zhang X, Zhang Q, Hu W, Qin Y, Wang K, Chen LY, Shirley N, Lin YR, Liu LY, Hernandez AG, Wright CL, Bulone V, Tuskan GA, Heath K, Zee F, Moore PH, Sunkar R, Leebens-Mack JH, Mockler T, Bennetzen JL, Freeling M, Sankoff D, Paterson AH, Zhu X, Yang X, Smith JA, Cushman JC, Paull RE, Yu Q., Nat Genet 47(12), 2015
PMID: 26523774
Biocatalysis for the application of CO2 as a chemical feedstock.
Alissandratos A, Easton CJ., Beilstein J Org Chem 11(), 2015
PMID: 26734087
Phylogeny and the inference of evolutionary trajectories.
Hancock L, Edwards EJ., J Exp Bot 65(13), 2014
PMID: 24755279
Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway.
Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, Wurdack KJ., Evolution 68(12), 2014
PMID: 25302554

83 References

Daten bereitgestellt von Europe PubMed Central.

Contemporaneous and recent radiations of the world’s major succulent plant lineages
Arakaki M, Christin PA, Nyffeler R, Lendel A, Eggli U, Ogburn RM, Spriggs E, Moore MJ, Edwards EJ., 2011
The role of proteins in C(3) plants prior to their recruitment into the C(4) pathway.
Aubry S, Brown NJ, Hibberd JM., J. Exp. Bot. 62(9), 2011
PMID: 21321052
Phylogenomics of C(4) photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence.
Besnard G, Muasya AM, Russier F, Roalson EH, Salamin N, Christin PA., Mol. Biol. Evol. 26(8), 2009
PMID: 19461115
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Phylogeny of the Caryophyllales sensu lato: Revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales.
Brockington SamuelF, Alexandre Roolse, Ramdial Jeremy, Moore MichaelJ, Crawley Sunny, Dhingra Amit, Hilu Khidir, Soltis DouglasE, Soltis PamelaS., Int. J. Plant Sci. 170(5), 2009
PMID: IND44210538
Effect of genetic convergence on phylogenetic inference.
Christin PA, Besnard G, Edwards EJ, Salamin N., Mol. Phylogenet. Evol. 62(3), 2011
PMID: 22197805
Parallel recruitment of multiple genes into c4 photosynthesis.
Christin PA, Boxall SF, Gregory R, Edwards EJ, Hartwell J, Osborne CP., Genome Biol Evol 5(11), 2013
PMID: 24179135
Can phylogenetics identify C(4) origins and reversals?
Christin PA, Freckleton RP, Osborne CP., Trends Ecol. Evol. (Amst.) 25(7), 2010
PMID: 20605250
The recurrent assembly of C4 photosynthesis, an evolutionary tale.
Christin PA, Osborne CP., Photosyn. Res. 117(1-3), 2013
PMID: 23703454
Anatomical enablers and the evolution of C photosynthesis in grasses
Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ., 2013
Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae.
Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF., Evolution 65(3), 2010
PMID: 20955197
C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
Christin PA, Salamin N, Savolainen V, Duvall MR, Besnard G., Curr. Biol. 17(14), 2007
PMID: 17614282
Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae
Crayn DM, Winter K, Smith JAC., 2004
Is it easy to move and easy to evolve? Evolutionary accessibility and adaptation.
Edwards EJ, Donoghue MJ., J. Exp. Bot. 64(13), 2013
PMID: 23913955
Angiosperm responses to a low-CO world: CAM and C photosynthesis as parallel evolutionary trajectories
Edwards EJ, Ogburn RM., 2012
New partial sequences of phosphoenolpyruvate carboxylase as molecular phylogenetic markers.
Gehrig H, Heute V, Kluge M., Mol. Phylogenet. Evol. 20(2), 2001
PMID: 11476634
Phytozome: a comparative platform for green plant genomics.
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS., Nucleic Acids Res. 40(Database issue), 2011
PMID: 22110026
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
C-phosphoenolpyruvate carboxylase
Gowik U, Westhoff P., 2011
Full-length transcriptome assembly from RNA-Seq data without a reference genome.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A., Nat. Biotechnol. 29(7), 2011
PMID: 21572440
You’re so vein: bundle sheath physiology, phylogeny and evolution in C and C plants
Griffiths H, Weller G, Toy LMF, Dennis RJ., 2013
Photosynthesis and anatomical characteristics in the C-crassulacean acid metabolism-cycling plant Portulaca grandiflora
Guralnick LJ, Edwards G, Ku MSB, Hockema B, Franceschi VR., 2002
The occurrence and phylogenetics of CAM in the Portulacaceae
Guralnick LJ, Jackson M., 2001
Phylogeny and the inference of evolutionary trajectories.
Hancock L, Edwards EJ., J. Exp. Bot. 65(13), 2014
PMID: 24755279
C photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure
Hatch MD., 1987
Characterization of C type leaf anatomy in grasses (Poaceae), mesophyll-bundle sheath area ratios
Hattersley PW., 1984
Evaluating methods for isolating total RNA and predicting the success of sequencing phylogenetically diverse plant transcriptomes.
Johnson MT, Carpenter EJ, Tian Z, Bruskiewich R, Burris JN, Carrigan CT, Chase MW, Clarke ND, Covshoff S, Depamphilis CW, Edger PP, Goh F, Graham S, Greiner S, Hibberd JM, Jordon-Thaden I, Kutchan TM, Leebens-Mack J, Melkonian M, Miles N, Myburg H, Patterson J, Pires JC, Ralph P, Rolf M, Sage RF, Soltis D, Soltis P, Stevenson D, Stewart CN Jr, Surek B, Thomsen CJ, Villarreal JC, Wu X, Zhang Y, Deyholos MK, Wong GK., PLoS ONE 7(11), 2012
PMID: 23185583
Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis.
Kadereit G, Borsch T, Weising K, Freitag H., Int. J. Plant Sci. 164(6), 2003
PMID: IND43665533
Evolution of CAM and C carbon-concentrating mechanisms
Keeley JE, Rundel PW., 2003
Crassulacean acid metabolism in three species of the C genus Portulaca
Kraybill AA, Martin CE., 1996
Fast gapped-read alignment with Bowtie 2.
Langmead B, Salzberg SL., Nat. Methods 9(4), 2012
PMID: 22388286
Induction of a crassulacean acid-like metabolism in the C succulent plant, Portulaca oleracea L.: study of enzymes involved in carbon fixation and carbohydrate metabolism
Lara MV, Drincovich MF, Andrea CS., 2004
Phosphoenolpyruvate carboxylase: structure, function, regulation and evolution
Lepiniec L, Vidal J, Chollet R, Gadal P, Cretin C., 1994
Changes in levels of phosphoenolpyurvate carboxylase with induction of Crassulacean acid metabolism (CAM)-like behavior in the C plant Portulaca oleracea
Mazen AMA., 1996
Changes in properties of phosphoenolpyruvate carboxylase with induction of Crassulacean Acid Metabolism (CAM) in the C plant Portulaca olearacea
Mazen AMA., 2000
Gene duplication, neofunctionalization, and the evolution of C photosynthesis
Monson RK., 2003
Functional leaf anatomy of plants with crassulacean acid metabolism
Nelson EA, Sage TL, Sage RF., 2005
Disintegrating Portulacaceae: a new familial classification of the suborder Portulacineae (Caryophyllales) based on molecular and morphological data
Nyffeler R, Eggli U., 2010
Variations on a theme: repeated evolution of succulent life forms in the Portulacineae (Caryophyllales)
Nyffeler R, Eggli U, Ogburn M, Edwards EJ., 2008
Evolution of leaf anatomy and photosynthetic pathways in Portulacaceae.
Ocampo G, Koteyeva NK, Voznesenskaya EV, Edwards GE, Sage TL, Sage RF, Columbus JT., Am. J. Bot. 100(12), 2013
PMID: 24259525
Crassulacean acid metabolism. A curiosity in context
Osmond CB., 1978

Rambaut A, Drummond AJ., 2007
Kinetic analyses of recombinant isoforms of phosphoenolpyruvate carboxylase from Hydrilla verticillata leaves and the impact of substituting a C-signature serine
Rao SK, Reiskind JB, Bowes G., 2008
The evolution of inorganic carbon concentrating mechanisms in photosynthesis.
Raven JA, Cockell CS, De La Rocha CL., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 363(1504), 2008
PMID: 18487130
Expression of the CAM-form of phospho(enol)pyruvate carboxylase and nucleotide sequence of a full length cDNA from Mesembryanthemum crystallinum.
Rickers J, Cushman JC, Michalowski CB, Schmitt JM, Bohnert HJ., Mol. Gen. Genet. 215(3), 1989
PMID: 2710107
MrBayes 3: Bayesian phylogenetic inference under mixed models.
Ronquist F, Huelsenbeck JP., Bioinformatics 19(12), 2003
PMID: 12912839
Environmental and evolutionary preconditions for the origin and diversification of the C photosynthetic syndrome
Sage RF., 2001
Are crassulacean acid metabolism and C photosynthesis incompatible?
Sage RF., 2002
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
Photorespiration and the evolution of C photosynthesis
Sage RF, Sage TL, Kocacinar F., 2012
Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes
Silvera K, Santiago LS, Winter K., 2005
Angiosperm phylogeny: 17 genes, 640 taxa.
Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Latvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu YL, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS., Am. J. Bot. 98(4), 2011
PMID: 21613169
Evolution of C4 phosphoenolpyruvate carboxylase.
Svensson P, Blasing OE, Westhoff P., Arch. Biochem. Biophys. 414(2), 2003
PMID: 12781769
Maize C4 and non-C4 NADP-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor.
Tausta SL, Coyle HM, Rothermel B, Stiefel V, Nelson T., Plant Mol. Biol. 50(4-5), 2002
PMID: 12374297
PAML 4: phylogenetic analysis by maximum likelihood.
Yang Z., Mol. Biol. Evol. 24(8), 2007
PMID: 17483113

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 24638902
PubMed | Europe PMC

Suchen in

Google Scholar