Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species

Külahoglu C, Denton AK, Sommer M, Mass J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, et al. (2014)
Plant Cell 26(8): 3243-3260.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.76 MB
Autor*in
Külahoglu, Canan; Denton, Alisandra K.; Sommer, Manuel; Mass, Janina; Schliesky, Simon; Wrobel, Thomas J.; Berckmans, Barbara; Gongora-Castillo, Elsa; Buell, C. Robin; Simon, Ruediger; De Veylder, Lieven; Bräutigam, AndreaUniBi
Alle
Abstract / Bemerkung
C-4 photosynthesis outperforms the ancestral C-3 state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C-3 backgrounds. However, the genetic architecture of C-4 photosynthesis remains largely unknown. To define the divergence in gene expression modules between C-3 and C-4 photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C-4) and Tarenaya hassleriana (C-3), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C-3 and C-4 species. We found that known C-4 genes were recruited to photosynthesis from different expression domains in C-3, including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C-3 root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C-4 bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C-4 leaf.
Erscheinungsjahr
2014
Zeitschriftentitel
Plant Cell
Band
26
Ausgabe
8
Seite(n)
3243-3260
ISSN
1040-4651
eISSN
1532-298X
Page URI
https://pub.uni-bielefeld.de/record/2915134

Zitieren

Külahoglu C, Denton AK, Sommer M, et al. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell. 2014;26(8):3243-3260.
Külahoglu, C., Denton, A. K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T. J., Berckmans, B., et al. (2014). Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell, 26(8), 3243-3260. doi:10.1105/tpc.114.123752
Külahoglu, C., Denton, A. K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T. J., Berckmans, B., Gongora-Castillo, E., Buell, C. R., Simon, R., et al. (2014). Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell 26, 3243-3260.
Külahoglu, C., et al., 2014. Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell, 26(8), p 3243-3260.
C. Külahoglu, et al., “Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species”, Plant Cell, vol. 26, 2014, pp. 3243-3260.
Külahoglu, C., Denton, A.K., Sommer, M., Mass, J., Schliesky, S., Wrobel, T.J., Berckmans, B., Gongora-Castillo, E., Buell, C.R., Simon, R., De Veylder, L., Bräutigam, A., Weber, A.P.M.: Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species. Plant Cell. 26, 3243-3260 (2014).
Külahoglu, Canan, Denton, Alisandra K., Sommer, Manuel, Mass, Janina, Schliesky, Simon, Wrobel, Thomas J., Berckmans, Barbara, Gongora-Castillo, Elsa, Buell, C. Robin, Simon, Ruediger, De Veylder, Lieven, Bräutigam, Andrea, and Weber, Andreas P. M. “Comparative Transcriptome Atlases Reveal Altered Gene Expression Modules between Two Cleomaceae C-3 and C-4 Plant Species”. Plant Cell 26.8 (2014): 3243-3260.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
8fdc61351bc27cb1a2d7b0470506afa3

38 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of alanine and aspartate aminotransferases in C4 photosynthesis.
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30126035
Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata.
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA., J Exp Bot 70(12), 2019
PMID: 30949663
Highly Expressed Genes Are Preferentially Co-Opted for C4 Photosynthesis.
Moreno-Villena JJ, Dunning LT, Osborne CP, Christin PA., Mol Biol Evol 35(1), 2018
PMID: 29040657
A roadmap for breeding orphan leafy vegetable species: a case study of Gynandropsis gynandra (Cleomaceae).
Sogbohossou EOD, Achigan-Dako EG, Maundu P, Solberg S, Deguenon EMS, Mumm RH, Hale I, Van Deynze A, Schranz ME., Hortic Res 5(), 2018
PMID: 29423232
Ancient duons may underpin spatial patterning of gene expression in C4 leaves.
Reyna-Llorens I, Burgess SJ, Reeves G, Singh P, Stevenson SR, Williams BP, Stanley S, Hibberd JM., Proc Natl Acad Sci U S A 115(8), 2018
PMID: 29432183
Brassicales phylogeny inferred from 72 plastid genes: A reanalysis of the phylogenetic localization of two paleopolyploid events and origin of novel chemical defenses.
Edger PP, Hall JC, Harkess A, Tang M, Coombs J, Mohammadin S, Schranz ME, Xiong Z, Leebens-Mack J, Meyers BC, Sytsma KJ, Koch MA, Al-Shehbaz IA, Pires JC., Am J Bot 105(3), 2018
PMID: 29574686
Sulfate Metabolism in C4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis.
Gerlich SC, Walker BJ, Krueger S, Kopriva S., Plant Physiol 178(2), 2018
PMID: 30104256
A Dead Gene Walking: Convergent Degeneration of a Clade of MADS-Box Genes in Crucifers.
Hoffmeier A, Gramzow L, Bhide AS, Kottenhagen N, Greifenstein A, Schubert O, Mummenhoff K, Becker A, Theißen G., Mol Biol Evol 35(11), 2018
PMID: 30053121
PISTILLATA paralogs in Tarenaya hassleriana have diverged in interaction specificity.
de Bruijn S, Zhao T, Muiño JM, Schranz EM, Angenent GC, Kaufmann K., BMC Plant Biol 18(1), 2018
PMID: 30577806
C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae).
Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U., J Exp Bot 68(2), 2017
PMID: 27660482
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 68(2), 2017
PMID: 28110279
Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data.
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber AP., J Exp Bot 68(2), 2017
PMID: 28043950
Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria.
Kümpers BM, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM., J Exp Bot 68(2), 2017
PMID: 28062590
Engineering central metabolism - a grand challenge for plant biologists.
Sweetlove LJ, Nielsen J, Fernie AR., Plant J 90(4), 2017
PMID: 28004455
Identification and characterization of miRNAs in two closely related C4 and C3 species of Cleome by high-throughput sequencing.
Gao S, Zhao W, Li X, You Q, Shen X, Guo W, Wang S, Shi G, Liu Z, Jiao Y., Sci Rep 7(), 2017
PMID: 28422166
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA., Evolution 71(6), 2017
PMID: 28395112
Elevated auxin biosynthesis and transport underlie high vein density in C4 leaves.
Huang CF, Yu CP, Wu YH, Lu MJ, Tu SL, Wu SH, Shiu SH, Ku MSB, Li WH., Proc Natl Acad Sci U S A 114(33), 2017
PMID: 28761000
De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae).
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G., Front Plant Sci 8(), 2017
PMID: 29184562
A Specific Transcriptome Signature for Guard Cells from the C4 Plant Gynandropsis gynandra.
Aubry S, Aresheva O, Reyna-Llorens I, Smith-Unna RD, Hibberd JM, Genty B., Plant Physiol 170(3), 2016
PMID: 26818731
Insights into the regulation of C4 leaf development from comparative transcriptomic analysis.
Huang CF, Chang YM, Lin JJ, Yu CP, Lin HH, Liu WY, Yeh S, Tu SL, Wu SH, Ku MS, Li WH., Curr Opin Plant Biol 30(), 2016
PMID: 26828378
Photorespiration connects C3 and C4 photosynthesis.
Bräutigam A, Gowik U., J Exp Bot 67(10), 2016
PMID: 26912798
Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.
Stata M, Sage TL, Hoffmann N, Covshoff S, Ka-Shu Wong G, Sage RF., Plant Cell Physiol 57(5), 2016
PMID: 26985020
Finding the genes to build C4 rice.
Wang P, Vlad D, Langdale JA., Curr Opin Plant Biol 31(), 2016
PMID: 27055266
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 67(14), 2016
PMID: 27059273
A synthesis of transcriptomic surveys to dissect the genetic basis of C4 photosynthesis.
Huang P, Brutnell TP., Curr Opin Plant Biol 31(), 2016
PMID: 27078208
Emerging model systems for functional genomics analysis of Crassulacean acid metabolism.
Hartwell J, Dever LV, Boxall SF., Curr Opin Plant Biol 31(), 2016
PMID: 27082281
Engineering C4 photosynthesis into C3 chassis in the synthetic biology age.
Schuler ML, Mantegazza O, Weber AP., Plant J 87(1), 2016
PMID: 26945781
Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
Christin PA, Arakaki M, Osborne CP, Edwards EJ., Mol Biol Evol 32(4), 2015
PMID: 25582594
What to compare and how: Comparative transcriptomics for Evo-Devo.
Roux J, Rosikiewicz M, Robinson-Rechavi M., J Exp Zool B Mol Dev Evol 324(4), 2015
PMID: 25864439
Insights into C4 metabolism from comparative deep sequencing.
Burgess SJ, Hibberd JM., Curr Opin Plant Biol 25(), 2015
PMID: 26051034
Discovering New Biology through Sequencing of RNA.
Weber AP., Plant Physiol 169(3), 2015
PMID: 26353759

75 References

Daten bereitgestellt von Europe PubMed Central.

You're so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants.
Griffiths H, Weller G, Toy LF, Dennis RJ., Plant Cell Environ. 36(2), 2012
PMID: 22827921
Anatomical enablers and the evolution of C4 photosynthesis in grasses.
Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ., Proc. Natl. Acad. Sci. U.S.A. 110(4), 2012
PMID: 23267116
A proteoglycan mediates inductive interaction during plant vascular development.
Motose H, Sugiyama M, Fukuda H., Nature 429(6994), 2004
PMID: 15215864
Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases.
Anderson LE., Biochim. Biophys. Acta 235(1), 1971
PMID: 5089710
Spatial regulation of photosynthetic development in C4 plants.
Langdale JA, Nelson T., Trends Genet. 7(6), 1991
PMID: 1906211
Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase.
Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J, Braam J., Plant Cell 7(10), 1995
PMID: 7580251
The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch.
Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW., Cell 86(1), 1996
PMID: 8689678
Light control of plant development.
Fankhauser C, Chory J., Annu. Rev. Cell Dev. Biol. 13(), 1997
PMID: 9442873
The Arabidopsis COP9 signalosome is essential for G2 phase progression and genomic stability.
Dohmann EM, Levesque MP, De Veylder L, Reichardt I, Jurgens G, Schmid M, Schwechheimer C., Development 135(11), 2008
PMID: 18434413
Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset.
Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inze D, De Veylder L., Proc. Natl. Acad. Sci. U.S.A. 105(38), 2008
PMID: 18787127
Integrating phylogeny into studies of C4 variation in the grasses.
Christin PA, Salamin N, Kellogg EA, Vicentini A, Besnard G., Plant Physiol. 149(1), 2009
PMID: 19126698
FZR2/CCS52A1 expression is a determinant of endoreduplication and cell expansion in Arabidopsis.
Larson-Rabin Z, Li Z, Masson PH, Day CD., Plant Physiol. 149(2), 2008
PMID: 19074624
Life with and without AtTIP1;1, an Arabidopsis aquaporin preferentially localized in the apposing tonoplasts of adjacent vacuoles.
Beebo A, Thomas D, Der C, Sanchez L, Leborgne-Castel N, Marty F, Schoefs B, Bouhidel K., Plant Mol. Biol. 70(1-2), 2009
PMID: 19229639
Pollen-mediated gene flow in a highly fragmented landscape: consequences for defining a conservation strategy of the relict Laperrine's olive.
Besnard G, Baali-Cherif D, Bettinelli-Riccardi S, Parietti D, Bouguedoura N., C. R. Biol. 332(7), 2009
PMID: 19523606
Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves.
Donner TJ, Sherr I, Scarpella E., Development 136(19), 2009
PMID: 19710171
The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome.
Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Sugimoto K., Plant Cell 21(8), 2009
PMID: 19717615
Endoreplication: polyploidy with purpose.
Lee HO, Davidson JM, Duronio RJ., Genes Dev. 23(21), 2009
PMID: 19884253
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.
Robinson MD, McCarthy DJ, Smyth GK., Bioinformatics 26(1), 2009
PMID: 19910308
Interplay of auxin, KANADI and Class III HD-ZIP transcription factors in vascular tissue formation.
Ilegems M, Douet V, Meylan-Bettex M, Uyttewaal M, Brand L, Bowman JL, Stieger PA., Development 137(6), 2010
PMID: 20179097
The origins of C4 grasslands: integrating evolutionary and ecosystem science.
Edwards EJ, Osborne CP, Stromberg CA, Smith SA; C4 Grasses Consortium, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey AD, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B., Science 328(5978), 2010
PMID: 20431008
SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana trichomes.
Kasili R, Walker JD, Simmons LA, Zhou J, De Veylder L, Larkin JC., Genetics 185(1), 2010
PMID: 20194967
VND-INTERACTING2, a NAC domain transcription factor, negatively regulates xylem vessel formation in Arabidopsis.
Yamaguchi M, Ohtani M, Mitsuda N, Kubo M, Ohme-Takagi M, Fukuda H, Demura T., Plant Cell 22(4), 2010
PMID: 20388856
Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin.
Anzola JM, Sieberer T, Ortbauer M, Butt H, Korbei B, Weinhofer I, Mullner AE, Luschnig C., Proc. Natl. Acad. Sci. U.S.A. 107(22), 2010
PMID: 20479223
Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato.
Mathieu-Rivet E, Gevaudant F, Sicard A, Salar S, Do PT, Mouras A, Fernie AR, Gibon Y, Rothan C, Chevalier C, Hernould M., Plant J. 62(5), 2010
PMID: 20230486
NAD-malic enzymes of Arabidopsis thaliana display distinct kinetic mechanisms that support differences in physiological control.
Tronconi MA, Gerrard Wheeler MC, Maurino VG, Drincovich MF, Andreo CS., Biochem. J. 430(2), 2010
PMID: 20528775
Evolution of C4 photosynthesis--looking for the master switch.
Westhoff P, Gowik U., Plant Physiol. 154(2), 2010
PMID: 20921192
A role for AUXIN RESISTANT3 in the coordination of leaf growth.
Perez-Perez JM, Candela H, Robles P, Lopez-Torrejon G, del Pozo JC, Micol JL., Plant Cell Physiol. 51(10), 2010
PMID: 20739302
The developmental dynamics of the maize leaf transcriptome.
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP., Nat. Genet. 42(12), 2010
PMID: 21037569
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process.
Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Muhlenbock P, Skirycz A, Gonzalez N, Beemster GT, Inze D., Dev. Cell 22(1), 2012
PMID: 22227310
Endoreduplication and development: rule without dividing?
Traas J, Hulskamp M, Gendreau E, Hofte H., Curr. Opin. Plant Biol. 1(6), 1998
PMID: 10066638
The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression.
Streatfield SJ, Weber A, Kinsman EA, Hausler RE, Li J, Post-Beittenmiller D, Kaiser WM, Pyke KA, Flugge UI, Chory J., Plant Cell 11(9), 1999
PMID: 10488230
The future of C4 research--maize, Flaveria or Cleome?
Brown NJ, Parsley K, Hibberd JM., Trends Plant Sci. 10(5), 2005
PMID: 15882653
Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis.
Beemster GT, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inze D, Vuylsteke M., Plant Physiol. 138(2), 2005
PMID: 15863702
The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers.
Cheng S, van den Bergh E, Zeng P, Zhong X, Xu J, Liu X, Hofberger J, de Bruijn S, Bhide AS, Kuelahoglu C, Bian C, Chen J, Fan G, Kaufmann K, Hall JC, Becker A, Brautigam A, Weber AP, Shi C, Zheng Z, Li W, Lv M, Tao Y, Wang J, Zou H, Quan Z, Hibberd JM, Zhang G, Zhu XG, Xu X, Schranz ME., Plant Cell 25(8), 2013
PMID: 23983221
Plastid signals and the bundle sheath: mesophyll development in reticulate mutants.
Lundquist PK, Rosar C, Brautigam A, Weber AP., Mol Plant 7(1), 2013
PMID: 24046062
BLAT--the BLAST-like alignment tool.
Kent WJ., Genome Res. 12(4), 2002
PMID: 11932250
Genome-wide analysis of core cell cycle genes in Arabidopsis.
Vandepoele K, Raes J, De Veylder L, Rouze P, Rombauts S, Inze D., Plant Cell 14(4), 2002
PMID: 11971144
"Big it up": endoreduplication and cell-size control in plants.
Sugimoto-Shirasu K, Roberts K., Curr. Opin. Plant Biol. 6(6), 2003
PMID: 14611952
A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis.
Wheeler MC, Tronconi MA, Drincovich MF, Andreo CS, Flugge UI, Maurino VG., Plant Physiol. 139(1), 2005
PMID: 16113210
Is C4 photosynthesis less phenotypically plastic than C3 photosynthesis?
Sage RF, McKown AD., J. Exp. Bot. 57(2), 2005
PMID: 16364950
Control of leaf vascular patterning by polar auxin transport.
Scarpella E, Marcos D, Friml J, Berleth T., Genes Dev. 20(8), 2006
PMID: 16618807
Pvclust: an R package for assessing the uncertainty in hierarchical clustering.
Suzuki R, Shimodaira H., Bioinformatics 22(12), 2006
PMID: 16595560
Cleome, a genus closely related to Arabidopsis, contains species spanning a developmental progression from C(3) to C(4) photosynthesis.
Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM., Plant J. 51(5), 2007
PMID: 17692080
Modification of cell proliferation patterns alters leaf vein architecture in Arabidopsis thaliana.
Kang J, Mizukami Y, Wang H, Fowke L, Dengler NG., Planta 226(5), 2007
PMID: 17569988
Specialization of CDC27 function in the Arabidopsis thaliana anaphase-promoting complex (APC/C).
Perez-Perez JM, Serralbo O, Vanstraelen M, Gonzalez C, Criqui MC, Genschik P, Kondorosi E, Scheres B., Plant J. 53(1), 2007
PMID: 17944809
The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula.
Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, Vandenbosch KA, Rose RJ., Plant Physiol. 146(4), 2008
PMID: 18235037
What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?
Zhu XG, Long SP, Ort DR., Curr. Opin. Biotechnol. 19(2), 2008
PMID: 18374559
Transcriptional regulation of vascular cell fates.
Ohashi-Ito K, Fukuda H., Curr. Opin. Plant Biol. 13(6), 2010
PMID: 20869293
An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
The Anaphase Promoting Complex activator CCS52A, a key factor for fruit growth and endoreduplication in Tomato.
Mathieu-Rivet E, Gevaudant F, Cheniclet C, Hernould M, Chevalier C., Plant Signal Behav 5(8), 2010
PMID: 20671429
Elucidating the functional role of endoreduplication in tomato fruit development.
Chevalier C, Nafati M, Mathieu-Rivet E, Bourdon M, Frangne N, Cheniclet C, Renaudin JP, Gevaudant F, Hernould M., Ann. Bot. 107(7), 2011
PMID: 21199834
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
Functional evolution of C(4) pyruvate, orthophosphate dikinase.
Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen TH., J. Exp. Bot. 62(9), 2011
PMID: 21414960
Exploiting the engine of C(4) photosynthesis.
Sage RF, Zhu XG., J. Exp. Bot. 62(9), 2011
PMID: 21652533
Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants.
Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A., Plant Sci. 181(2), 2011
PMID: 21683879
Making leaves.
Byrne ME., Curr. Opin. Plant Biol. 15(1), 2011
PMID: 22079784
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
Light-regulated and cell-specific methylation of the maize PEPC promoter.
Tolley BJ, Woodfield H, Wanchana S, Bruskiewich R, Hibberd JM., J. Exp. Bot. 63(3), 2011
PMID: 22143916
Scarecrow plays a role in establishing Kranz anatomy in maize leaves.
Slewinski TL, Anderson AA, Zhang C, Turgeon R., Plant Cell Physiol. 53(12), 2012
PMID: 23128603
GTL1 keeps cell growth and nuclear ploidy under control.
Caro E, Desvoyes B, Gutierrez C., EMBO J. 31(24), 2012
PMID: 23188085
Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth.
Breuer C, Morohashi K, Kawamura A, Takahashi N, Ishida T, Umeda M, Grotewold E, Sugimoto K., EMBO J. 31(24), 2012
PMID: 23143274
Brassinosteroid production and signaling differentially control cell division and expansion in the leaf.
Zhiponova MK, Vanhoutte I, Boudolf V, Betti C, Dhondt S, Coppens F, Mylle E, Maes S, Gonzalez-Garcia MP, Cano-Delgado AI, Inze D, Beemster GT, De Veylder L, Russinova E., New Phytol. 197(2), 2012
PMID: 23253334

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 25122153
PubMed | Europe PMC

Suchen in

Google Scholar