The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization

Steffens A, Bräutigam A, Jakoby M, Hülskamp M (2015)
PLOS Biology 13(7): e1002188.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 14.16 MB
Steffens, Alexandra; Bräutigam, AndreaUniBi ; Jakoby, Marc; Hülskamp, Martin
Abstract / Bemerkung
Members of the highly conserved class of BEACH domain containing proteins (BDCPs) have been established as broad facilitators of protein-protein interactions and membrane dynamics in the context of human diseases like albinism, bleeding diathesis, impaired cellular immunity, cancer predisposition, and neurological dysfunctions. Also, the Arabidopsis thaliana BDCP SPIRRIG (SPI) is important for membrane integrity, as spi mutants exhibit split vacuoles. In this work, we report a novel molecular function of the BDCP SPI in ribonucleoprotein particle formation. We show that SPI interacts with the P-body core component DECAPPING PROTEIN 1 (DCP1), associates to mRNA processing bodies (P-bodies), and regulates their assembly upon salt stress. The finding that spi mutants exhibit salt hypersensitivity suggests that the local function of SPI at P-bodies is of biological relevance. Transcriptome-wide analysis revealed qualitative differences in the salt stress-regulated transcriptional response of Col-0 and spi. We show that SPI regulates the salt stress-dependent post-transcriptional stabilization, cytoplasmic agglomeration, and localization to P-bodies of a subset of salt stress-regulated mRNAs. Finally, we show that the PH-BEACH domains of SPI and its human homolog FAN (Factor Associated with Neutral sphingomyelinase activation) interact with DCP1 isoforms from plants, mammals, and yeast, suggesting the evolutionary conservation of an association of BDCPs and P-bodies.
PLOS Biology
Page URI


Steffens A, Bräutigam A, Jakoby M, Hülskamp M. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLOS Biology. 2015;13(7): e1002188.
Steffens, A., Bräutigam, A., Jakoby, M., & Hülskamp, M. (2015). The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLOS Biology, 13(7), e1002188. doi:10.1371/journal.pbio.1002188
Steffens, Alexandra, Bräutigam, Andrea, Jakoby, Marc, and Hülskamp, Martin. 2015. “The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization”. PLOS Biology 13 (7): e1002188.
Steffens, A., Bräutigam, A., Jakoby, M., and Hülskamp, M. (2015). The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLOS Biology 13:e1002188.
Steffens, A., et al., 2015. The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLOS Biology, 13(7): e1002188.
A. Steffens, et al., “The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization”, PLOS Biology, vol. 13, 2015, : e1002188.
Steffens, A., Bräutigam, A., Jakoby, M., Hülskamp, M.: The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization. PLOS Biology. 13, : e1002188 (2015).
Steffens, Alexandra, Bräutigam, Andrea, Jakoby, Marc, and Hülskamp, Martin. “The BEACH Domain Protein SPIRRIG Is Essential for Arabidopsis Salt Stress Tolerance and Functions as a Regulator of Transcript Stabilization and Localization”. PLOS Biology 13.7 (2015): e1002188.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

14 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress.
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J., Front Plant Sci 10(), 2019
PMID: 30873189
Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms.
Vu LD, Zhu T, Verstraeten I, van de Cotte B, International Wheat Genome Sequencing Consortium, Gevaert K, De Smet I., J Exp Bot 69(19), 2018
PMID: 29939309
Regulation of mRNA decay in plant responses to salt and osmotic stress.
Kawa D, Testerink C., Cell Mol Life Sci 74(7), 2017
PMID: 27677492
Quantitative trait loci controlling leaf venation in Arabidopsis.
Rishmawi L, Bühler J, Jaegle B, Hülskamp M, Koornneef M., Plant Cell Environ 40(8), 2017
PMID: 28252189
The BEACH Protein LRBA Promotes the Localization of the Heterotrimeric G-protein Golf to Olfactory Cilia.
Kurtenbach S, Gießl A, Strömberg S, Kremers J, Atorf J, Rasche S, Neuhaus EM, Hervé D, Brandstätter JH, Asan E, Hatt H, Kilimann MW., Sci Rep 7(1), 2017
PMID: 28814779
Comparative and population genomic landscape of Phellinus noxius: A hypervariable fungus causing root rot in trees.
Chung CL, Lee TJ, Akiba M, Lee HH, Kuo TH, Liu D, Ke HM, Yokoi T, Roa MB, Lu MJ, Chang YY, Ann PJ, Tsai JN, Chen CY, Tzean SS, Ota Y, Hattori T, Sahashi N, Liou RF, Kikuchi T, Tsai IJ., Mol Ecol 26(22), 2017
PMID: 28926153
Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies.
Petre B, Saunders DG, Sklenar J, Lorrain C, Krasileva KV, Win J, Duplessis S, Kamoun S., PLoS One 11(2), 2016
PMID: 26863009
WD40-Repeat Proteins in Plant Cell Wall Formation: Current Evidence and Research Prospects.
Guerriero G, Hausman JF, Ezcurra I., Front Plant Sci 6(), 2015
PMID: 26734023

110 References

Daten bereitgestellt von Europe PubMed Central.

The role of BEACH proteins in Dictyostelium.
De Lozanne A., Traffic 4(1), 2003
PMID: 12535270
The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein.
Saedler R, Jakoby M, Marin B, Galiana-Jaime E, Hulskamp M., Plant J. 59(4), 2009
PMID: 19392685
Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome.
Nagle DL, Karim MA, Woolf EA, Holmgren L, Bork P, Misumi DJ, McGrail SH, Dussault BJ Jr, Perou CM, Boissy RE, Duyk GM, Spritz RA, Moore KJ., Nat. Genet. 14(3), 1996
PMID: 8896560
Identification of the homologous beige and Chediak-Higashi syndrome genes.
Barbosa MD, Nguyen QA, Tchernev VT, Ashley JA, Detter JC, Blaydes SM, Brandt SJ, Chotai D, Hodgman C, Solari RC, Lovett M, Kingsmore SF., Nature 382(6588), 1996
PMID: 8717042
Identification of the murine beige gene by YAC complementation and positional cloning.
Perou CM, Moore KJ, Nagle DL, Misumi DJ, Woolf EA, McGrail SH, Holmgren L, Brody TH, Dussault BJ Jr, Monroe CA, Duyk GM, Pryor RJ, Li L, Justice MJ, Kaplan J., Nat. Genet. 13(3), 1996
PMID: 8673129
Clinical, molecular, and cell biological aspects of Chediak-Higashi syndrome.
Introne W, Boissy RE, Gahl WA., Mol. Genet. Metab. 68(2), 1999
PMID: 10527680
Deregulated expression of LRBA facilitates cancer cell growth.
Wang JW, Gamsby JJ, Highfill SL, Mora LB, Bloom GC, Yeatman TJ, Pan TC, Ramne AL, Chodosh LA, Cress WD, Chen J, Kerr WG., Oncogene 23(23), 2004
PMID: 15064745
The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism.
Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, Swinnen L, Fryns JP, Van de Ven W, Devriendt K., J. Med. Genet. 40(5), 2003
PMID: 12746398
Bchs, a BEACH domain protein, antagonizes Rab11 in synapse morphogenesis and other developmental events.
Khodosh R, Augsburger A, Schwarz TL, Garrity PA., Development 133(23), 2006
PMID: 17079274
A concanavalin A-like lectin domain in the CHS1/LYST protein, shared by members of the BEACH family.
Burgess A, Mornon JP, de Saint-Basile G, Callebaut I., Bioinformatics 25(10), 2009
PMID: 19289442
A link between mRNA turnover and RNA interference in Arabidopsis.
Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R., Science 306(5698), 2004
PMID: 15528448
AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets.
Souret FF, Kastenmayer JP, Green PJ., Mol. Cell 15(2), 2004
PMID: 15260969
A link between RNA metabolism and silencing affecting Arabidopsis development.
Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR., Dev. Cell 14(6), 2008
PMID: 18486559
Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures.
van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B., EMBO J. 21(24), 2002
PMID: 12486012
The hDcp2 protein is a mammalian mRNA decapping enzyme.
Wang Z, Jiao X, Carr-Schmid A, Kiledjian M., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12218187
P bodies and the control of mRNA translation and degradation.
Parker R, Sheth U., Mol. Cell 25(5), 2007
PMID: 17349952
P bodies: at the crossroads of post-transcriptional pathways.
Eulalio A, Behm-Ansmant I, Izaurralde E., Nat. Rev. Mol. Cell Biol. 8(1), 2007
PMID: 17183357
The control of mRNA decapping and P-body formation.
Franks TM, Lykke-Andersen J., Mol. Cell 32(5), 2008
PMID: 19061636
Involvement of FAN in TNF-induced apoptosis.
Segui B, Cuvillier O, Adam-Klages S, Garcia V, Malagarie-Cazenave S, Leveque S, Caspar-Bauguil S, Coudert J, Salvayre R, Kronke M, Levade T., J. Clin. Invest. 108(1), 2001
PMID: 11435466
The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins.
Tchernev VT, Mansfield TA, Giot L, Kumar AM, Nandabalan K, Li Y, Mishra VS, Detter JC, Rothberg JM, Wallace MR, Southwick FS, Kingsmore SF., Mol. Med. 8(1), 2002
PMID: 11984006
The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy.
Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A., Mol. Cell 38(2), 2010
PMID: 20417604
Functional interaction between sequestosome-1/p62 and autophagy-linked FYVE-containing protein WDFY3 in human osteoclasts.
Hocking LJ, Mellis DJ, McCabe PS, Helfrich MH, Rogers MJ., Biochem. Biophys. Res. Commun. 402(3), 2010
PMID: 20971078
FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase.
Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Kronke M., Cell 86(6), 1996
PMID: 8808629
Processing-body movement in Arabidopsis depends on an interaction between myosins and DECAPPING PROTEIN1.
Steffens A, Jaegle B, Tresch A, Hulskamp M, Jakoby M., Plant Physiol. 164(4), 2014
PMID: 24525673
Protein-Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery.
Richardson LG, Howard AS, Khuu N, Gidda SK, McCartney A, Morphy BJ, Mullen RT., Front Plant Sci 2(), 2011
PMID: 22639582
The Arabidopsis ESCRT protein-protein interaction network.
Shahriari M, Richter K, Keshavaiah C, Sabovljevic A, Huelskamp M, Schellmann S., Plant Mol. Biol. 76(1-2), 2011
PMID: 21442383
Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis.
Pesch M, Schultheiß I, Digiuni S, Uhrig JF, Hulskamp M., Development 140(16), 2013
PMID: 23900543
Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions.
Tudisca V, Recouvreux V, Moreno S, Boy-Marcotte E, Jacquet M, Portela P., Eur. J. Cell Biol. 89(4), 2009
PMID: 19804918
Processing bodies require RNA for assembly and contain nontranslating mRNAs.
Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R., RNA 11(4), 2005
PMID: 15703442
Mammalian stress granules and processing bodies.
Kedersha N, Anderson P., Meth. Enzymol. 431(), 2007
PMID: 17923231
Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation.
Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J., Ann. Bot. 96(4), 2005
PMID: 16081496
RNA granules: post-transcriptional and epigenetic modulators of gene expression.
Anderson P, Kedersha N., Nat. Rev. Mol. Cell Biol. 10(6), 2009
PMID: 19461665
Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies.
Brengues M, Teixeira D, Parker R., Science 310(5747), 2005
PMID: 16141371
Cytoplasmic foci are sites of mRNA decay in human cells.
Cougot N, Babajko S, Seraphin B., J. Cell Biol. 165(1), 2004
PMID: 15067023
A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies.
Andrei MA, Ingelfinger D, Heintzmann R, Achsel T, Rivera-Pomar R, Luhrmann R., RNA 11(5), 2005
PMID: 15840819
The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis.
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C., Plant Cell Physiol. 48(8), 2007
PMID: 17609218
Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis.
Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z., Mol Plant 2(1), 2008
PMID: 19529826
CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis.
Pandey GK, Cheong YH, Kim BG, Grant JJ, Li L, Luan S., Cell Res. 17(5), 2007
PMID: 17486125
The CBL-CIPK network mediates different signaling pathways in plants.
Yu Q, An L, Li W., Plant Cell Rep. 33(2), 2013
PMID: 24097244
Arabidopsis zinc finger proteins AtC3H49/AtTZF3 and AtC3H20/AtTZF2 are involved in ABA and JA responses.
Lee SJ, Jung HJ, Kang H, Kim SY., Plant Cell Physiol. 53(4), 2012
PMID: 22383628
Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis.
Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L., Plant J. 12(3), 1997
PMID: 9351242
A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence.
Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B., Plant J. 62(2), 2010
PMID: 20113437
The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana.
Schult K, Meierhoff K, Paradies S, Toller T, Wolff P, Westhoff P., Plant Cell 19(4), 2007
PMID: 17435084
Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana.
Narsai R, Howell KA, Millar AH, O'Toole N, Small I, Whelan J., Plant Cell 19(11), 2007
PMID: 18024567
Germline P granules are liquid droplets that localize by controlled dissolution/condensation.
Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA., Science 324(5935), 2009
PMID: 19460965
Phase transitions in the assembly of multivalent signalling proteins.
Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK., Nature 483(7389), 2012
PMID: 22398450
Getting RNA and protein in phase.
Weber SC, Brangwynne CP., Cell 149(6), 2012
PMID: 22682242
Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules.
Leung AK, Calabrese JM, Sharp PA., Proc. Natl. Acad. Sci. U.S.A. 103(48), 2006
PMID: 17116888
The dynamics of mammalian P body transport, assembly, and disassembly in vivo.
Aizer A, Brody Y, Ler LW, Sonenberg N, Singer RH, Shav-Tal Y., Mol. Biol. Cell 19(10), 2008
PMID: 18653466
Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies.
Arribere JA, Doudna JA, Gilbert WV., Mol. Cell 44(5), 2011
PMID: 22152478
Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana.
Sormani R, Masclaux-Daubresse C, Daniel-Vedele F, Daniele-Vedele F, Chardon F., PLoS ONE 6(12), 2011
PMID: 22164228
Changes in mRNA stability associated with cold stress in Arabidopsis cells.
Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S., Plant Cell Physiol. 54(2), 2012
PMID: 23220693
Identification of cold-inducible microRNAs in plants by transcriptome analysis.
Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W., Biochim. Biophys. Acta 1779(11), 2008
PMID: 18471443
Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC., RNA 14(5), 2008
PMID: 18356539
Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome.
Albers CA, Cvejic A, Favier R, Bouwmans EE, Alessi MC, Bertone P, Jordan G, Kettleborough RN, Kiddle G, Kostadima M, Read RJ, Sipos B, Sivapalaratnam S, Smethurst PA, Stephens J, Voss K, Nurden A, Rendon A, Nurden P, Ouwehand WH., Nat. Genet. 43(8), 2011
PMID: 21765411
A role for Q/N-rich aggregation-prone regions in P-body localization.
Reijns MA, Alexander RD, Spiller MP, Beggs JD., J. Cell. Sci. 121(Pt 15), 2008
PMID: 18611963
mRNA decapping is promoted by an RNA-binding channel in Dcp2.
Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD., Mol. Cell 29(3), 2008
PMID: 18280238
Structural basis of dcp2 recognition and activation by dcp1.
She M, Decker CJ, Svergun DI, Round A, Chen N, Muhlrad D, Parker R, Song H., Mol. Cell 29(3), 2008
PMID: 18280239
A split active site couples cap recognition by Dcp2 to activation.
Floor SN, Jones BN, Hernandez GA, Gross JD., Nat. Struct. Mol. Biol. 17(9), 2010
PMID: 20711189
Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan.
Floor SN, Borja MS, Gross JD., Proc. Natl. Acad. Sci. U.S.A. 109(8), 2012
PMID: 22323607
Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms.
Nissan T, Rajyaguru P, She M, Song H, Parker R., Mol. Cell 39(5), 2010
PMID: 20832728
Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition.
Borja MS, Piotukh K, Freund C, Gross JD., RNA 17(2), 2010
PMID: 21148770
The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex.
Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, Izaurralde E, Sprangers R., EMBO J. 31(2), 2011
PMID: 22085934
The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement.
Sweet T, Kovalak C, Coller J., PLoS Biol. 10(6), 2012
PMID: 22719226
Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.
Romero-Santacreu L, Moreno J, Perez-Ortin JE, Alepuz P., RNA 15(6), 2009
PMID: 19369426
Genome-wide role of P-bodies mRNP in mRNA decay of Saccharomyces cerevisiae
Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans.
Olszewski PK, Rozman J, Jacobsson JA, Rathkolb B, Stromberg S, Hans W, Klockars A, Alsio J, Riserus U, Becker L, Holter SM, Elvert R, Ehrhardt N, Gailus-Durner V, Fuchs H, Fredriksson R, Wolf E, Klopstock T, Wurst W, Levine AS, Marcus C, de Angelis MH, Klingenspor M, Schioth HB, Kilimann MW., PLoS Genet. 8(3), 2012
PMID: 22438821
FAN stimulates TNF(alpha)-induced gene expression, leukocyte recruitment, and humoral response.
Montfort A, de Badts B, Douin-Echinard V, Martin PG, Iacovoni J, Nevoit C, Therville N, Garcia V, Bertrand MA, Bessieres MH, Trombe MC, Levade T, Benoist H, Segui B., J. Immunol. 183(8), 2009
PMID: 19786552
Arabidopsis thaliana floral dip transformation method.
Bent A., Methods Mol. Biol. 343(), 2006
PMID: 16988336
What Is Stress? Dose-Response Effects in Commonly Used in Vitro Stress Assays.
Claeys H, Van Landeghem S, Dubois M, Maleux K, Inze D., Plant Physiol. 165(2), 2014
PMID: 24710067
RACK1 is a negative regulator of ABA responses in Arabidopsis.
Guo J, Wang J, Xi L, Huang WD, Liang J, Chen JG., J. Exp. Bot. 60(13), 2009
PMID: 19584117
Simple and highly efficient BAC recombineering using galK selection.
Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG., Nucleic Acids Res. 33(4), 2005
PMID: 15731329
PtdIns(4,5)P-restricted plasma membrane localization of FAN is involved in TNF-induced actin reorganization.
Haubert D, Gharib N, Rivero F, Wiegmann K, Hosel M, Kronke M, Kashkar H., EMBO J. 26(14), 2007
PMID: 17599063
Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity.
Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE., Plant Cell 17(9), 2005
PMID: 16040633
Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.
Gietz RD, Schiestl RH, Willems AR, Woods RA., Yeast 11(4), 1995
PMID: 7785336
Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation.
Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hulskamp M., Development 130(14), 2003
PMID: 12783786
A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies.
Horstman A, Tonaco IA, Boutilier K, Immink RG., Int J Mol Sci 15(6), 2014
PMID: 24886811
Two-sided fluorescence resonance energy transfer for assessing molecular interactions of up to three distinct species in confocal microscopy.
Fazekas Z, Petras M, Fabian A, Palyi-Krekk Z, Nagy P, Damjanovich S, Vereb G, Szollosi J., Cytometry A 73(3), 2008
PMID: 18044751
Sulfamethazine suppresses epigenetic silencing in Arabidopsis by impairing folate synthesis.
Zhang H, Deng X, Miki D, Cutler S, La H, Hou YJ, Oh J, Zhu JK., Plant Cell 24(3), 2012
PMID: 22447685
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.
Robinson MD, McCarthy DJ, Smyth GK., Bioinformatics 26(1), 2009
PMID: 19910308
A guide to using MapMan to visualize and compare Omics data in plants: a case study in the crop species, Maize
GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z., BMC Bioinformatics 10(), 2009
PMID: 19192299
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 26133670
PubMed | Europe PMC

Suchen in

Google Scholar