Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J (2016)
Plant Cell 28(1): 102-129.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.08 MB
Autor*in
Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, AndreaUniBi ; Zeier, Jürgen
Abstract / Bemerkung
We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants.
Erscheinungsjahr
2016
Zeitschriftentitel
Plant Cell
Band
28
Ausgabe
1
Seite(n)
102-129
ISSN
1040-4651
eISSN
1532-298X
Page URI
https://pub.uni-bielefeld.de/record/2915131

Zitieren

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell. 2016;28(1):102-129.
Bernsdorff, F., Döring, A. - C., Gruner, K., Schuck, S., Bräutigam, A., & Zeier, J. (2016). Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 28(1), 102-129. doi:10.1105/tpc.15.00496
Bernsdorff, Friederike, Döring, Anne-Christin, Gruner, Katrin, Schuck, Stefan, Bräutigam, Andrea, and Zeier, Jürgen. 2016. “Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways”. Plant Cell 28 (1): 102-129.
Bernsdorff, F., Döring, A. - C., Gruner, K., Schuck, S., Bräutigam, A., and Zeier, J. (2016). Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell 28, 102-129.
Bernsdorff, F., et al., 2016. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 28(1), p 102-129.
F. Bernsdorff, et al., “Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways”, Plant Cell, vol. 28, 2016, pp. 102-129.
Bernsdorff, F., Döring, A.-C., Gruner, K., Schuck, S., Bräutigam, A., Zeier, J.: Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell. 28, 102-129 (2016).
Bernsdorff, Friederike, Döring, Anne-Christin, Gruner, Katrin, Schuck, Stefan, Bräutigam, Andrea, and Zeier, Jürgen. “Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways”. Plant Cell 28.1 (2016): 102-129.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:54Z
MD5 Prüfsumme
5a508fc3d0c671eb112589ed516e33e7


41 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Preparing plants for improved cold tolerance by priming.
Baier M, Bittner A, Prescher A, van Buer J., Plant Cell Environ 42(3), 2019
PMID: 29974962
The NAC family transcription factor GmNAC42-1 regulates biosynthesis of the anticancer and neuroprotective glyceollins in soybean.
Jahan MA, Harris B, Lowery M, Coburn K, Infante AM, Percifield RJ, Ammer AG, Kovinich N., BMC Genomics 20(1), 2019
PMID: 30786857
Flowering plant immune repertoires expand under mycorrhizal symbiosis.
Kramer EM, Statter SA, Yi HJ, Carlson JW, McClelland DHR., Plant Direct 3(3), 2019
PMID: 31245768
Enhancement of Jasmonate-Mediated Antiherbivore Defense Responses in Tomato by Acetic Acid, a Potent Inducer for Plant Protection.
Chen D, Shao M, Sun S, Liu T, Zhang H, Qin N, Zeng R, Song Y., Front Plant Sci 10(), 2019
PMID: 31231416
STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1.
Nietzsche M, Guerra T, Alseekh S, Wiermer M, Sonnewald S, Fernie AR, Börnke F., Plant Physiol 176(2), 2018
PMID: 29192025
Primed primary metabolism in systemic leaves: a functional systems analysis.
Schwachtje J, Fischer A, Erban A, Kopka J., Sci Rep 8(1), 2018
PMID: 29317679
Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection.
Hassan JA, de la Torre-Roche R, White JC, Lewis JD., Plant Direct 2(2), 2018
PMID: 31245710
Signals of Systemic Immunity in Plants: Progress and Open Questions.
Ádám AL, Nagy ZÁ, Kátay G, Mergenthaler E, Viczián O., Int J Mol Sci 19(4), 2018
PMID: 29642641
N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis.
Chen YC, Holmes EC, Rajniak J, Kim JG, Tang S, Fischer CR, Mudgett MB, Sattely ES., Proc Natl Acad Sci U S A 115(21), 2018
PMID: 29735713
A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance.
Gruner K, Zeier T, Aretz C, Zeier J., Plant J 94(6), 2018
PMID: 29660188
Pipecolic acid confers systemic immunity by regulating free radicals.
Wang C, Liu R, Lim GH, de Lorenzo L, Yu K, Zhang K, Hunt AG, Kachroo A, Kachroo P., Sci Adv 4(5), 2018
PMID: 29854946
The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids.
Maksym RP, Ghirardo A, Zhang W, von Saint Paul V, Lange B, Geist B, Hajirezaei MR, Schnitzler JP, Schäffner AR., Front Plant Sci 9(), 2018
PMID: 29937770
Salicylic Acid Induces Resistance in Rubber Tree against Phytophthora palmivora.
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, Churngchow N., Int J Mol Sci 19(7), 2018
PMID: 29949940
Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future.
Klessig DF, Choi HW, Dempsey DA., Mol Plant Microbe Interact 31(9), 2018
PMID: 29781762
Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis.
Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E., Plant Cell Physiol 59(8), 2018
PMID: 29931201
A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance.
Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J, Tsuda K., Plant Cell 30(10), 2018
PMID: 30228125
Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition.
Zhang W, Zhao F, Jiang L, Chen C, Wu L, Liu Z., Cells 7(12), 2018
PMID: 30544557
Oviposition by Spodoptera exigua on Solanum dulcamara Alters the Plant's Response to Herbivory and Impairs Larval Performance.
Geuss D, Lortzing T, Schwachtje J, Kopka J, Steppuhn A., Int J Mol Sci 19(12), 2018
PMID: 30545097
Ratoon rice generated from primed parent plants exhibit enhanced herbivore resistance.
Ye M, Song YY, Baerson SR, Long J, Wang J, Pan Z, Lin WX, Zeng RS., Plant Cell Environ 40(5), 2017
PMID: 28042888
Fermentative production of L-pipecolic acid from glucose and alternative carbon sources.
Pérez-García F, Max Risse J, Friehs K, Wendisch VF., Biotechnol J 12(7), 2017
PMID: 28169491
Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity.
Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J., Plant Physiol 174(1), 2017
PMID: 28330936
Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in tomato.
Fujita M, Kusajima M, Okumura Y, Nakajima M, Minamisawa K, Nakashita H., Biosci Biotechnol Biochem 81(8), 2017
PMID: 28569642
Elicitor-Induced Biochemical and Molecular Manifestations to Improve Drought Tolerance in Rice (Oryza sativa L.) through Seed-Priming.
Samota MK, Sasi M, Awana M, Yadav OP, Amitha Mithra SV, Tyagi A, Kumar S, Singh A., Front Plant Sci 8(), 2017
PMID: 28634483
Sugar Accumulation in Leaves of Arabidopsis sweet11/sweet12 Double Mutants Enhances Priming of the Salicylic Acid-Mediated Defense Response.
Gebauer P, Korn M, Engelsdorf T, Sonnewald U, Koch C, Voll LM., Front Plant Sci 8(), 2017
PMID: 28848581
Transcriptome and proteome analysis reveal new insight into proximal and distal responses of wheat to foliar infection by Xanthomonas translucens.
Garcia-Seco D, Chiapello M, Bracale M, Pesce C, Bagnaresi P, Dubois E, Moulin L, Vannini C, Koebnik R., Sci Rep 7(1), 2017
PMID: 28860643
Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance.
Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J., Mol Plant 9(5), 2016
PMID: 26802249
Comparative Proteomics Analysis of Phloem Exudates Collected during the Induction of Systemic Acquired Resistance.
Carella P, Merl-Pham J, Wilson DC, Dey S, Hauck SM, Vlot AC, Cameron RK., Plant Physiol 171(2), 2016
PMID: 27208255
Omic Relief for the Biotically Stressed: Metabolomics of Plant Biotic Interactions.
Tenenboim H, Brotman Y., Trends Plant Sci 21(9), 2016
PMID: 27185334
Protein Phosphatase 2A in the Regulatory Network Underlying Biotic Stress Resistance in Plants.
Durian G, Rahikainen M, Alegre S, Brosché M, Kangasjärvi S., Front Plant Sci 7(), 2016
PMID: 27375664
Obligate Biotroph Pathogens of the Genus Albugo Are Better Adapted to Active Host Defense Compared to Niche Competitors.
Ruhe J, Agler MT, Placzek A, Kramer K, Finkemeier I, Kemen EM., Front Plant Sci 7(), 2016
PMID: 27379119
Oxygen Sensing via the Ethylene Response Transcription Factor RAP2.12 Affects Plant Metabolism and Performance under Both Normoxia and Hypoxia.
Paul MV, Iyer S, Amerhauser C, Lehmann M, van Dongen JT, Geigenberger P., Plant Physiol 172(1), 2016
PMID: 27372243
The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism.
Zhang Q, Li Y, Xu T, Srivastava AK, Wang D, Zeng L, Yang L, He L, Zhang H, Zheng Z, Yang DL, Zhao C, Dong J, Gong Z, Liu R, Zhu JK., Cell Discov 2(), 2016
PMID: 27551435
The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors.
Üstün S, Sheikh A, Gimenez-Ibanez S, Jones A, Ntoukakis V, Börnke F., Plant Physiol 172(3), 2016
PMID: 27613851
Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance.
Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, Xu S, Li X, Jetter R, Feussner I, Zhang Y., Plant Cell 28(10), 2016
PMID: 27758894

78 References

Daten bereitgestellt von Europe PubMed Central.

An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis.
Mateo A, Funck D, Muhlenbock P, Kular B, Mullineaux PM, Karpinski S., J. Exp. Bot. 57(8), 2006
PMID: 16698814
FiRe and microarrays: a fast answer to burning questions.
Garcion C, Baltensperger R, Fournier T, Pasquier J, Schnetzer MA, Gabriel JP, Metraux JP., Trends Plant Sci. 11(7), 2006
PMID: 16807061
A role for a flavin-containing mono-oxygenase in resistance against microbial pathogens in Arabidopsis.
Koch M, Vorwerk S, Masur C, Sharifi-Sirchi G, Olivieri N, Schlaich NL., Plant J. 47(4), 2006
PMID: 16856982
Plant stomata function in innate immunity against bacterial invasion.
Melotto M, Underwood W, Koczan J, Nomura K, He SY., Cell 126(5), 2006
PMID: 16959575
Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates.
Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M., Proc. Natl. Acad. Sci. U.S.A. 104(3), 2007
PMID: 17215350
Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae.
Acharya BR, Raina S, Maqbool SB, Jagadeeswaran G, Mosher SL, Appel HM, Schultz JC, Klessig DF, Raina R., Plant J. 50(3), 2007
PMID: 17419849
Flavin-containing monooxygenases in plants: looking beyond detox.
Schlaich NL., Trends Plant Sci. 12(9), 2007
PMID: 17765596
Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis.
Tan X, Meyers BC, Kozik A, West MA, Morgante M, St Clair DA, Bent AF, Michelmore RW., BMC Plant Biol. 7(), 2007
PMID: 17956627
Different roles of Enhanced Disease Susceptibility1 (EDS1) bound to and dissociated from Phytoalexin Deficient4 (PAD4) in Arabidopsis immunity.
Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE., New Phytol. 191(1), 2011
PMID: 21434927
Transcription dynamics in plant immunity.
Moore JW, Loake GJ, Spoel SH., Plant Cell 23(8), 2011
PMID: 21841124
Molecular aspects of defence priming.
Conrath U., Trends Plant Sci. 16(10), 2011
PMID: 21782492
A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000.
Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY., PLoS Pathog. 7(10), 2011
PMID: 21998587
The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
La Camera S, L'haridon F, Astier J, Zander M, Abou-Mansour E, Page G, Thurow C, Wendehenne D, Gatz C, Metraux JP, Lamotte O., Plant J. 68(3), 2011
PMID: 21756272
Brush and spray: a high-throughput systemic acquired resistance assay suitable for large-scale genetic screening.
Jing B, Xu S, Xu M, Li Y, Li S, Ding J, Zhang Y., Plant Physiol. 157(3), 2011
PMID: 21900483
Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.
Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, Chen JY, Wang F, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z., Plant Physiol. 159(2), 2012
PMID: 22535423
NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants.
Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X., Nature 486(7402), 2012
PMID: 22699612
The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid.
Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C., Cell Rep 1(6), 2012
PMID: 22813739
SOS - too many signals for systemic acquired resistance?
Dempsey DA, Klessig DF., Trends Plant Sci. 17(9), 2012
PMID: 22749315
Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis.
Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, Suzuki H, Shibata D, Jikumaru Y, Hanada A, Kamiya Y, Shirasu K., Plant Cell 24(9), 2012
PMID: 22960909
Natural variation in small molecule-induced TIR-NB-LRR signaling induces root growth arrest via EDS1- and PAD4-complexed R protein VICTR in Arabidopsis.
Kim TH, Kunz HH, Bhattacharjee S, Hauser F, Park J, Engineer C, Liu A, Ha T, Parker JE, Gassmann W, Schroeder JI., Plant Cell 24(12), 2012
PMID: 23275581
Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling.
Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J., Proc. Natl. Acad. Sci. U.S.A. 96(23), 1999
PMID: 10557364
Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid.
Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B., Proc. Natl. Acad. Sci. U.S.A. 97(23), 2000
PMID: 11058166
Manipulation of salicylate content in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase.
Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C., Plant J. 25(1), 2001
PMID: 11169183
Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4.
Feys BJ, Moisan LJ, Newman MA, Parker JE., EMBO J. 20(19), 2001
PMID: 11574472
Isochorismate synthase is required to synthesize salicylic acid for plant defence.
Wildermuth MC, Dewdney J, Wu G, Ausubel FM., Nature 414(6863), 2001
PMID: 11734859
Genome-wide insertional mutagenesis of Arabidopsis thaliana.
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR., Science 301(5633), 2003
PMID: 12893945
MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes.
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M., Plant J. 37(6), 2004
PMID: 14996223
A key role for ALD1 in activation of local and systemic defenses in Arabidopsis.
Song JT, Lu H, McDowell JM, Greenberg JT., Plant J. 40(2), 2004
PMID: 15447647
A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes.
Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW., Plant Cell 6(7), 1994
PMID: 8069104
The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance.
Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X., Plant Cell 9(9), 1997
PMID: 9338960
PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis.
Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J., Plant Cell 10(6), 1998
PMID: 9634589
The isolation of L-pipecolinic acid from Trifolium repens.
MORRISON RI., Biochem. J. 53(3), 1953
PMID: 13032096
Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis.
Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD., Plant Physiol. 138(2), 2005
PMID: 15955925
The Arabidopsis Information Resource (TAIR): gene structure and function annotation.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E., Nucleic Acids Res. 36(Database issue), 2007
PMID: 17986450
Cross talk in defense signaling.
Koornneef A, Pieterse CM., Plant Physiol. 146(3), 2008
PMID: 18316638
Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis.
Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Metraux JP., Plant Physiol. 147(3), 2008
PMID: 18451262
The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access.
Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y., Plant J. 55(3), 2008
PMID: 18419781
GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists.
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z., BMC Bioinformatics 10(), 2009
PMID: 19192299
Priming in systemic plant immunity.
Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT., Science 324(5923), 2009
PMID: 19342588
Signaling cross-talk in plant disease resistance.
Derksen H, Rampitsch C, Daayf F., Plant Sci. 207(), 2013
PMID: 23602102
Systemic acquired resistance: turning local infection into global defense.
Fu ZQ, Dong X., Annu Rev Plant Biol 64(), 2013
PMID: 23373699
Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation.
Dubiella U, Seybold H, Durian G, Komander E, Lassig R, Witte CP, Schulze WX, Romeis T., Proc. Natl. Acad. Sci. U.S.A. 110(21), 2013
PMID: 23650383
Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5.
Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, Heck S, Geisler M, Mauch F, Nawrath C, Metraux JP., Plant Physiol. 162(4), 2013
PMID: 23757404
Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana.
Tsuda K, Mine A, Bethke G, Igarashi D, Botanga CJ, Tsuda Y, Glazebrook J, Sato M, Katagiri F., PLoS Genet. 9(12), 2013
PMID: 24348271
Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco.
Vogel-Adghough D, Stahl E, Navarova H, Zeier J., Plant Signal Behav 8(11), 2013
PMID: 24025239
Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling.
Tateda C, Zhang Z, Shrestha J, Jelenska J, Chinchilla D, Greenberg JT., Plant Cell 26(10), 2014
PMID: 25315322
Bacteria-triggered systemic immunity in barley is associated with WRKY and ETHYLENE RESPONSIVE FACTORs but not with salicylic acid.
Dey S, Wenig M, Langen G, Sharma S, Kugler KG, Knappe C, Hause B, Bichlmeier M, Babaeizad V, Imani J, Janzik I, Stempfl T, Huckelhoven R, Kogel KH, Mayer KF, Vlot AC., Plant Physiol. 166(4), 2014
PMID: 25332505
Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling.
Yan H, Yoo MJ, Koh J, Liu L, Chen Y, Acikgoz D, Wang Q, Chen S., J. Proteome Res. 13(12), 2014
PMID: 25311705
Insect eggs induce a systemic acquired resistance in Arabidopsis.
Hilfiker O, Groux R, Bruessow F, Kiefer K, Zeier J, Reymond P., Plant J. 80(6), 2014
PMID: 25329965
Reassess the t Test: Interact with All Your Data via ANOVA.
Brady SM, Burow M, Busch W, Carlborg O, Denby KJ, Glazebrook J, Hamilton ES, Harmer SL, Haswell ES, Maloof JN, Springer NM, Kliebenstein DJ., Plant Cell 27(8), 2015
PMID: 26220933
Plant pattern-recognition receptors.
Zipfel C., Trends Immunol. 35(7), 2014
PMID: 24946686
Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana.
Beckers GJ, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U., Plant Cell 21(3), 2009
PMID: 19318610
Salicylic Acid, a multifaceted hormone to combat disease.
Vlot AC, Dempsey DA, Klessig DF., Annu Rev Phytopathol 47(), 2009
PMID: 19400653
The role of WRKY transcription factors in plant immunity.
Pandey SP, Somssich IE., Plant Physiol. 150(4), 2009
PMID: 19420325
Regulation of gene expression by jasmonate hormones.
Memelink J., Phytochemistry 70(13-14), 2009
PMID: 19796781
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.
Robinson MD, McCarthy DJ, Smyth GK., Bioinformatics 26(1), 2009
PMID: 19910308
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26672068
PubMed | Europe PMC

Suchen in

Google Scholar