Photorespiration connects C-3 and C-4 photosynthesis

Bräutigam A, Gowik U (2016)
Journal of Experimental Botany 67(10): 2953-2962.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 6.67 MB
Abstract / Bemerkung
Changes in the expression of photorespiratory genes induce and establish important phases of C-4 evolution.C-4 plants evolved independently more than 60 times from C-3 ancestors. C-4 photosynthesis is a complex trait and its evolution from the ancestral C-3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and the current CO2 concentration in the atmosphere, the C-4 pathway is more efficient than C-3 photosynthesis because it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C-4 evolution that not only includes the avoidance of photorespiration as the major driving force for C-4 evolution but also highlights the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases on the path from C-3 to C-4.
C-4 photosynthesis; CO2 fixation; evolution; photorespiration
Journal of Experimental Botany
Page URI


Bräutigam A, Gowik U. Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany. 2016;67(10):2953-2962.
Bräutigam, A., & Gowik, U. (2016). Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany, 67(10), 2953-2962. doi:10.1093/jxb/erw056
Bräutigam, Andrea, and Gowik, Udo. 2016. “Photorespiration connects C-3 and C-4 photosynthesis”. Journal of Experimental Botany 67 (10): 2953-2962.
Bräutigam, A., and Gowik, U. (2016). Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany 67, 2953-2962.
Bräutigam, A., & Gowik, U., 2016. Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany, 67(10), p 2953-2962.
A. Bräutigam and U. Gowik, “Photorespiration connects C-3 and C-4 photosynthesis”, Journal of Experimental Botany, vol. 67, 2016, pp. 2953-2962.
Bräutigam, A., Gowik, U.: Photorespiration connects C-3 and C-4 photosynthesis. Journal of Experimental Botany. 67, 2953-2962 (2016).
Bräutigam, Andrea, and Gowik, Udo. “Photorespiration connects C-3 and C-4 photosynthesis”. Journal of Experimental Botany 67.10 (2016): 2953-2962.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The role of alanine and aspartate aminotransferases in C4 photosynthesis.
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 30126035
Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata.
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA., J Exp Bot 70(12), 2019
PMID: 30949663
Gene duplication and dosage effects during the early emergence of C4 photosynthesis in the grass genus Alloteropsis.
Bianconi ME, Dunning LT, Moreno-Villena JJ, Osborne CP, Christin PA., J Exp Bot 69(8), 2018
PMID: 29394370
Natural Variation within a Species for Traits Underpinning C4 Photosynthesis.
Reeves G, Singh P, Rossberg TA, Sogbohossou EOD, Schranz ME, Hibberd JM., Plant Physiol 177(2), 2018
PMID: 29678862
Reactive oxygen species and redox regulation in mesophyll and bundle sheath cells of C4 plants.
Turkan I, Uzilday B, Dietz KJ, Bräutigam A, Ozgur R., J Exp Bot 69(14), 2018
PMID: 29529246
Sulfate Metabolism in C4 Flaveria Species Is Controlled by the Root and Connected to Serine Biosynthesis.
Gerlich SC, Walker BJ, Krueger S, Kopriva S., Plant Physiol 178(2), 2018
PMID: 30104256
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 68(2), 2017
PMID: 28110279
C3 -C4 intermediates may be of hybrid origin - a reminder.
Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW., New Phytol 215(1), 2017
PMID: 28397963
On the Evolutionary Origin of CAM Photosynthesis.
Bräutigam A, Schlüter U, Eisenhut M, Gowik U., Plant Physiol 174(2), 2017
PMID: 28416703
Introgression and repeated co-option facilitated the recurrent emergence of C4 photosynthesis among close relatives.
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA., Evolution 71(6), 2017
PMID: 28395112
De novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae).
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G., Front Plant Sci 8(), 2017
PMID: 29184562
Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis.
Eller F, Skálová H, Caplan JS, Bhattarai GP, Burger MK, Cronin JT, Guo WY, Guo X, Hazelton ELG, Kettenring KM, Lambertini C, McCormick MK, Meyerson LA, Mozdzer TJ, Pyšek P, Sorrell BK, Whigham DF, Brix H., Front Plant Sci 8(), 2017
PMID: 29250081
Walking the C4 pathway: past, present, and future.
Furbank RT., J Exp Bot 67(14), 2016
PMID: 27059273
Genome biogeography reveals the intraspecific spread of adaptive mutations for a complex trait.
Olofsson JK, Bianconi M, Besnard G, Dunning LT, Lundgren MR, Holota H, Vorontsova MS, Hidalgo O, Leitch IJ, Nosil P, Osborne CP, Christin PA., Mol Ecol 25(24), 2016
PMID: 27862505

91 References

Daten bereitgestellt von Europe PubMed Central.

Nutrient limitation on terrestrial plant growth--modeling the interaction between nitrogen and phosphorus.
Agren GI, Wetterstedt JA, Billberger MF., New Phytol. 194(4), 2012
PMID: 22458659

Genetic manipulation of glycine decarboxylation.
Bauwe H, Kolukisaoglu U., J. Exp. Bot. 54(387), 2003
PMID: 12730263
Photorespiration: players, partners and origin.
Bauwe H, Hagemann M, Fernie AR., Trends Plant Sci. 15(6), 2010
PMID: 20403720

An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species.
Brautigam A, Kajala K, Wullenweber J, Sommer M, Gagneul D, Weber KL, Carr KM, Gowik U, Mass J, Lercher MJ, Westhoff P, Hibberd JM, Weber AP., Plant Physiol. 155(1), 2010
PMID: 20543093
Leaf maximum photosynthetic rate and venation are linked by hydraulics.
Brodribb TJ, Feild TS, Jordan GJ., Plant Physiol. 144(4), 2007
PMID: 17556506
Photosynthetic Plasticity in Flaveria brownii: Growth Irradiance and the Expression of C(4) Photosynthesis.
Cheng SH, Moore BD, Wu J, Edwards GE, Ku MS., Plant Physiol. 89(4), 1989
PMID: 16666675
C(4) eudicots are not younger than C(4) monocots.
Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21393383
Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae.
Christin PA, Sage TL, Edwards EJ, Ogburn RM, Khoshravesh R, Sage RF., Evolution 65(3), 2010
PMID: 20955197
Anatomical enablers and the evolution of C4 photosynthesis in grasses.
Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR, Garrison LM, Vorontsova MS, Edwards EJ., Proc. Natl. Acad. Sci. U.S.A. 110(4), 2012
PMID: 23267116
The evolutionary ecology of C4 plants.
Christin PA, Osborne CP., New Phytol. 204(4), 2014
PMID: 25263843
Molecular dating, evolutionary rates, and the age of the grasses.
Christin PA, Spriggs E, Osborne CP, Stromberg CA, Salamin N, Edwards EJ., Syst. Biol. 63(2), 2013
PMID: 24287097
C4GEM, a genome-scale metabolic model to study C4 plant metabolism.
Dal'Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK., Plant Physiol. 154(4), 2010
PMID: 20974891




The origins of C4 grasslands: integrating evolutionary and ecosystem science.
Edwards EJ, Osborne CP, Stromberg CA, Smith SA; C4 Grasses Consortium, Bond WJ, Christin PA, Cousins AB, Duvall MR, Fox DL, Freckleton RP, Ghannoum O, Hartwell J, Huang Y, Janis CM, Keeley JE, Kellogg EA, Knapp AK, Leakey AD, Nelson DM, Saarela JM, Sage RF, Sala OE, Salamin N, Still CJ, Tipple B., Science 328(5978), 2010
PMID: 20431008

Single-cell C(4) photosynthesis versus the dual-cell (Kranz) paradigm.
Edwards GE, Franceschi VR, Voznesenskaya EV., Annu Rev Plant Biol 55(), 2004
PMID: 15377218
The gene for the P-subunit of glycine decarboxylase from the C4 species Flaveria trinervia: analysis of transcriptional control in transgenic Flaveria bidentis (C4) and Arabidopsis (C3).
Engelmann S, Wiludda C, Burscheidt J, Gowik U, Schlue U, Koczor M, Streubel M, Cossu R, Bauwe H, Westhoff P., Plant Physiol. 146(4), 2008
PMID: 18305210

Alteration of organic acid metabolism in Arabidopsis overexpressing the maize C4 NADP-malic enzyme causes accelerated senescence during extended darkness.
Fahnenstich H, Saigo M, Niessen M, Zanor MI, Andreo CS, Fernie AR, Drincovich MF, Flugge UI, Maurino VG., Plant Physiol. 145(3), 2007
PMID: 17885087
A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species.
Farquhar GD, von Caemmerer S, Berry JA., Planta 149(1), 1980
PMID: 24306196
Cracking the Kranz enigma with systems biology.
Fouracre JP, Ando S, Langdale JA., J. Exp. Bot. 65(13), 2014
PMID: 24510938
Evolution of C4 photosynthesis in the genus Flaveria: how many and which genes does it take to make C4?
Gowik U, Brautigam A, Weber KL, Weber AP, Westhoff P., Plant Cell 23(6), 2011
PMID: 21705644
You're so vein: bundle sheath physiology, phylogeny and evolution in C3 and C4 plants.
Griffiths H, Weller G, Toy LF, Dennis RJ., Plant Cell Environ. 36(2), 2012
PMID: 22827921

Overexpression of C(4)-cycle enzymes in transgenic C(3) plants: a biotechnological approach to improve C(3)-photosynthesis.
Hausler RE, Hirsch HJ, Kreuzaler F, Peterhansel C., J. Exp. Bot. 53(369), 2002
PMID: 11886879
Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape.
Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber AP, Lercher MJ., Cell 153(7), 2013
PMID: 23791184
Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C 4 intermediate species.
Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW., Planta 175(4), 1988
PMID: 24221925
Evolutionary convergence of cell-specific gene expression in independent lineages of C4 grasses.
John CR, Smith-Unna RD, Woodfield H, Covshoff S, Hibberd JM., Plant Physiol. 165(1), 2014
PMID: 24676859
C2 photosynthesis generates about 3-fold elevated leaf CO2 levels in the C3-C4 intermediate species Flaveria pubescens.
Keerberg O, Parnik T, Ivanova H, Bassuner B, Bauwe H., J. Exp. Bot. 65(13), 2014
PMID: 24916069
Plant species intermediate for c3, c4 photosynthesis.
Kennedy RA, Laetsch WM., Science 184(4141), 1974
PMID: 17736195
Paradigm shift in plant growth control.
Korner C., Curr. Opin. Plant Biol. 25(), 2015
PMID: 26037389
Uncouplers of Spinach Chloroplast Photosynthetic Phosphorylation.
Krogmann DW, Jagendorf AT, Avron M., Plant Physiol. 34(3), 1959
PMID: 16655214
Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species.
Kulahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Brautigam A, Weber AP., Plant Cell 26(8), 2014
PMID: 25122153
The developmental dynamics of the maize leaf transcriptome.
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP., Nat. Genet. 42(12), 2010
PMID: 21037569
Deconstructing Kranz anatomy to understand C4 evolution.
Lundgren MR, Osborne CP, Christin PA., J. Exp. Bot. 65(13), 2014
PMID: 24799561
Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize.
Majeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ., Plant Cell 22(11), 2010
PMID: 21081695
The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.
Mallmann J, Heckmann D, Brautigam A, Lercher MJ, Weber AP, Westhoff P, Gowik U., Elife 3(), 2014
PMID: 24935935


Functional analysis of corn husk photosynthesis.
Pengelly JJ, Kwasny S, Bala S, Evans JR, Voznesenskaya EV, Koteyeva NK, Edwards GE, Furbank RT, von Caemmerer S., Plant Physiol. 156(2), 2011
PMID: 21511990
Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle.
Pengelly JJ, Tan J, Furbank RT, von Caemmerer S., Plant Physiol. 160(2), 2012
PMID: 22846191
Systems analysis of a maize leaf developmental gradient redefines the current C4 model and provides candidates for regulation.
Pick TR, Brautigam A, Schluter U, Denton AK, Colmsee C, Scholz U, Fahnenstich H, Pieruschka R, Rascher U, Sonnewald U, Weber AP., Plant Cell 23(12), 2011
PMID: 22186372
Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.
Prasad V, Stromberg CA, Leache AD, Samant B, Patnaik R, Tang L, Mohabey DM, Ge S, Sahni A., Nat Commun 2(), 2011
PMID: 21934664


Leaf hydraulics.
Sack L, Holbrook NM., Annu Rev Plant Biol 57(), 2006
PMID: 16669766
Developmentally based scaling of leaf venation architecture explains global ecological patterns.
Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T., Nat Commun 3(), 2012
PMID: 22588299
The evolution of C4 photosynthesis.
Sage RF., New Phytol. 161(2), 2004
PMID: IND43668189
The C(4) plant lineages of planet Earth.
Sage RF, Christin PA, Edwards EJ., J. Exp. Bot. 62(9), 2011
PMID: 21414957
Photorespiration and the evolution of C4 photosynthesis.
Sage RF, Sage TL, Kocacinar F., Annu Rev Plant Biol 63(), 2012
PMID: 22404472
Initial events during the evolution of C4 photosynthesis in C3 species of Flaveria.
Sage TL, Busch FA, Johnson DC, Friesen PC, Stinson CR, Stata M, Sultmanis S, Rahman BA, Rawsthorne S, Sage RF., Plant Physiol. 163(3), 2013
PMID: 24064930
Pattern formation in the vascular system of monocot and dicot plant species.
Scarpella E, Meijer AH., New Phytol. 164(2), 2004
PMID: IND43654247
Polar auxin transport and patterning: grow with the flow.
Scheres B, Xu J., Genes Dev. 20(8), 2006
PMID: 16618803
Evolution of C4 photosynthesis in the genus flaveria: establishment of a photorespiratory CO2 pump.
Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U, Westhoff P., Plant Cell 25(7), 2013
PMID: 23847152


Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis.
Wang Y, Brautigam A, Weber AP, Zhu XG., J. Exp. Bot. 65(13), 2014
PMID: 24609651
Quantity and kinetic properties of ribulose 1,5-bisphosphate carboxylase in C3, C4, and C3–C4 intermediate species of Flaveria (Asteraceae)
Wessinger, Plant and Cell Physiology 30(), 1989
Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis.
Williams BP, Johnston IG, Covshoff S, Hibberd JM., Elife 2(), 2013
PMID: 24082995

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 26912798
PubMed | Europe PMC

Suchen in

Google Scholar