Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes

Böhnke A, Martens U, Sterwerf C, Niesen A, Huebner T, von der Ehe M, Meinert M, Kuschel T, Thomas A, Heiliger C, Münzenberg M, et al. (2017)
Nature Communications 8(1): 1626.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Spin caloritronics studies the interplay between charge-, heat- and spin-currents, which are initiated by temperature gradients in magnetic nanostructures. A plethora of new phenomena has been discovered that promises, e.g., to make wasted heat in electronic devices useable or to provide new read-out mechanisms for information. However, only few materials have been studied so far with Seebeck voltages of only some microvolt, which hampers applications. Here, we demonstrate that half-metallic Heusler compounds are hot candidates for enhancing spin-dependent thermoelectric effects. This becomes evident when considering the asymmetry of the spin-split density of electronic states around the Fermi level that determines the spin-dependent thermoelectric transport in magnetic tunnel junctions. We identify Co2FeAl and Co2FeSi Heusler compounds as ideal due to their energy gaps in the minority density of states, and demonstrate devices with substantially larger Seebeck voltages and tunnel magneto-Seebeck effect ratios than the commonly used Co-Fe-B-based junctions.
Erscheinungsjahr
Zeitschriftentitel
Nature Communications
Band
8
Ausgabe
1
Art.-Nr.
1626
ISSN
PUB-ID

Zitieren

Böhnke A, Martens U, Sterwerf C, et al. Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications. 2017;8(1): 1626.
Böhnke, A., Martens, U., Sterwerf, C., Niesen, A., Huebner, T., von der Ehe, M., Meinert, M., et al. (2017). Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications, 8(1), 1626. doi:10.1038/s41467-017-01784-x
Böhnke, A., Martens, U., Sterwerf, C., Niesen, A., Huebner, T., von der Ehe, M., Meinert, M., Kuschel, T., Thomas, A., Heiliger, C., et al. (2017). Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications 8:1626.
Böhnke, A., et al., 2017. Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications, 8(1): 1626.
A. Böhnke, et al., “Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes”, Nature Communications, vol. 8, 2017, : 1626.
Böhnke, A., Martens, U., Sterwerf, C., Niesen, A., Huebner, T., von der Ehe, M., Meinert, M., Kuschel, T., Thomas, A., Heiliger, C., Münzenberg, M., Reiss, G.: Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes. Nature Communications. 8, : 1626 (2017).
Böhnke, Alexander, Martens, Ulrike, Sterwerf, Christian, Niesen, Alessia, Huebner, Torsten, von der Ehe, Marvin, Meinert, Markus, Kuschel, Timo, Thomas, Andy, Heiliger, Christian, Münzenberg, Markus, and Reiss, Günter. “Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes”. Nature Communications 8.1 (2017): 1626.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

51 References

Daten bereitgestellt von Europe PubMed Central.

Spin caloritronics.
Bauer GE, Saitoh E, van Wees BJ., Nat Mater 11(5), 2012
PMID: 22522639
Spin caloritronics
Boona SR, Myers RC, Heremans JP., 2014
Seebeck effect in magnetic tunnel junctions.
Walter M, Walowski J, Zbarsky V, Munzenberg M, Schafers M, Ebke D, Reiss G, Thomas A, Peretzki P, Seibt M, Moodera JS, Czerner M, Bachmann M, Heiliger C., Nat Mater 10(10), 2011
PMID: 21785418
Tunneling magnetothermopower in magnetic tunnel junction nanopillars.
Liebing N, Serrano-Guisan S, Rott K, Reiss G, Langer J, Ocker B, Schumacher HW., Phys. Rev. Lett. 107(17), 2011
PMID: 22107572
Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction.
Boehnke A, Walter M, Roschewsky N, Eggebrecht T, Drewello V, Rott K, Munzenberg M, Thomas A, Reiss G., Rev Sci Instrum 84(6), 2013
PMID: 23822355
On/off switching of bit readout in bias-enhanced tunnel magneto-Seebeck effect.
Boehnke A, Milnikel M, von der Ehe M, Franz C, Zbarsky V, Czerner M, Rott K, Thomas A, Heiliger C, Reiss G, Munzenberg M., Sci Rep 5(), 2015
PMID: 25755010
Giant thermal spin-torque-assisted magnetic tunnel junction switching.
Pushp A, Phung T, Rettner C, Hughes BP, Yang SH, Parkin SS., Proc. Natl. Acad. Sci. U.S.A. 112(21), 2015
PMID: 25971730
Origins of large light induced voltage in magnetic tunnel junctions grown on semiconductor substrates
Xu Y., 2016
Comparison of laser-induced and intrinsic tunnel magneto-Seebeck effect in CoFeB/MgAlO and CoFeB/MgO magnetic tunnel junctions
Huebner T., 2016
Magnetic tunnel junctions with integrated thermometers for magnetothermopower measurements.
Bohnert T, Serrano-Guisan S, Paz E, Lacoste B, Ferreira R, Freitas PP., J Phys Condens Matter 29(18), 2017
PMID: 28247852
Influence of the thermal interface resistance on the thermovoltage of a magnetic tunnel junction
Böhnert T., 2017
Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature
Ikeda S., 2008
Spin caloritronics in magnetic tunnel junctions: Ab initio studies
Czerner M, Bachmann M, Heiliger C., 2011
Ab initio studies of the tunneling magneto-Seebeck effect: Influence of magnetic material
Heiliger C, Franz C, Czerner M., 2013
Spincaloric properties of epitaxial CoMnSi/MgO/CoMnSi magnetic tunnel junctions
Geisler B, Kratzer P., 2015
Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds
Kandpal HC, Fecher GH, Felser C., 2007
Evidence for band structure effects in the magnetoresistance of Co-based Heusler compounds
Thomas A., 2008
Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited CoFeAl/MgO/CoFe magnetic tunnel junctions
Wang W, Sukegawa H, Shan R, Mitani S, Inomata K., 2009
Seebeck coefficients of half-metallic ferromagnets
Balke B., 2010
Direct measurement of the spin polarization of CoFeAl in combination with MgO tunnel barriers
Schebaum O., 2010
GW study of the half-metallic Heusler compounds CoMnSi and CoFeSi
Meinert M, Friedrich C, Reiss G, Blügel S., 2012
Insights into the electronic structure of CoFeSi from x-ray magnetic linear dichroism
Meinert M., 2012
First-principles study of spin-dependent thermoelectric properties of half-metallic Heusler thin films between platinum leads
Comtesse D, Geisler B, Entel P, Kratzer P, Szunyogh L., 2014
Silicon spintronics.
Jansen R., Nat Mater 11(5), 2012
PMID: 22522640
Relative strength of thermal and electrical spin currents in a ferromagnetic tunnel contact on a semiconductor
Jeon KR, Saito H, Yuasa S, Jansen R., 2015
Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling.
Le Breton JC, Sharma S, Saito H, Yuasa S, Jansen R., Nature 475(7354), 2011
PMID: 21716285
Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches
Butler W, Zhang XG, Schulthess T, MacLaren J., 2001
Tunneling conductance of asymmetrical barriers
Brinkman WF, Dynes RC, Rowell JM., 1970
Crystal growth of titanium nitride by chemical vapor deposition
Kato A, Tamari N., 1975
Insights into ultrafast demagnetization in pseudogap half-metals
Mann A., 2012
High TMR ratio in CoFeSi and FeCoSi based magnetic tunnel junctions
Sterwerf C, Meinert M, Schmalhorst JM, Reiss G., 2013
Determination of spin-dependent Seebeck coefficients of CoFeB/MgO/CoFeB magnetic tunnel junction nanopillars
Liebing N., 2012
Probing fast heating in magnetic tunnel junction structures with exchange bias
Papusoi C, Sousa R, Herault J, Prejbeanu IL, Dieny B., 2008

AUTHOR UNKNOWN, 0
Measurement of thermal conductivity of thin films with a Si-N membrane-based microcalorimeter
Zink BL, Revaz B, Cherry JJ, Hellman F., 2005
Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms
Zhang QG, Cao BY, Zhang X, Fujii M, Takahashi K., 2006
Thermal conductivity of sputtered oxide films.
Lee S, Cahill DG, Allen TH., Phys. Rev., B Condens. Matter 52(1), 1995
PMID: 9979598
Structural, electronic, magnetic and thermodynamic properties of full Heusler compound CoVSi: Ab initio study
Bentouaf A, Hassan FEH., 2015
Thermal conductivity of half-Heusler compounds from first-principles calculations
Shiomi J, Esfarjani K, Chen G., 2011
Thermoelectric properties of the semimetallic Heusler compounds FeVM (M = Al, Ga)
Lue CS, Kuo YK., 2002

Chase MW., 1998
Titanium nitride as a seed layer for Heusler compounds
Niesen A., 2015
Thermal Transport and Nonequilibrium Temperature Drop Across a Magnetic Tunnel Junction.
Zhang J, Bachman M, Czerner M, Heiliger C., Phys. Rev. Lett. 115(3), 2015
PMID: 26230824
AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
Curtarolo S., 2012
Low Gilbert damping in CoFeSi and FeCoSi films
Sterwerf C., 2016
Noise spectroscopy of CoFeB/MgO/CoFeB magnetic tunnel junctions in the presence of thermal gradients
Liebing N, Serrano-Guisan S, Rott K, Reiss G, Schumacher H., 2016
Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves
Choi GM, Moon CH, Min BC, Lee KJ, Cahill DG., 2015
Parameter space for thermal spin-transfer torque
Leutenantsmeyer JC., 2013
Comparison of the magneto-Peltier and magneto-Seebeck effects in magnetic tunnel junctions
Shan J., 2015
Current-induced torques in magnetic materials.
Brataas A, Kent AD, Ohno H., Nat Mater 11(5), 2012
PMID: 22522637
Device implications of spin-transfer torques
Katine JA, Fullerton EE., 2008

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29158514
PubMed | Europe PMC

Suchen in

Google Scholar