Compact fs ytterbium fiber laser at 1010 nm for biomedical applications

Kong C, Pilger C, Hachmeister H, Wei X, Cheung TH, Lai CSW, Huser T, Tsia KK, Wong KKY (2017)
BIOMEDICAL OPTICS EXPRESS 8(11): 4921-4932.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ;
Abstract / Bemerkung
Ytterbium-doped fiber lasers (YDFLs) working in the near-infrared (NIR) spectral window and capable of high-power operation are popular in recent years. They have been broadly used in a variety of scientific and industrial research areas, including light bullet generation, optical frequency comb formation, materials fabrication, free-space laser communication, and biomedical diagnostics as well. The growing interest in YDFLs has also been cultivated for the generation of high-power femtosecond (fs) pulses. Unfortunately, the operating wavelengths of fs YDFLs have mostly been confined to two spectral bands, i.e., 970-980 nm through the three-level energy transition and 1030-1100 nm through the quasi three-level energy transition, leading to a spectral gap (990-1020 nm) in between, which is attributed to an intrinsically weak gain in this wavelength range. Here we demonstrate a high-power mode-locked fs YDFL operating at 1010 nm, which is accomplished in a compact and cost-effective package. It exhibits superior performance in terms of both short-term and long-term stability, i.e., <0.3% (peak intensity over 2.4 mu s) and < 4.0% (average power over 24 hours), respectively. To illustrate the practical applications, it is subsequently employed as a versatile fs laser for high-quality nonlinear imaging of biological samples, including two-photon excited fluorescence microscopy of mouse kidney and brain sections, as well as polarization-sensitive second-harmonic generation microscopy of potato starch granules and mouse tail muscle. It is anticipated that these efforts will largely extend the capability of fs YDFLs which is continuously tunable over 970-1100 nm wavelength range for wideband hyperspectral operations, serving as a promising complement to the gold-standard Ti: sapphire fs lasers. (C) 2017 Optical Society of America
Erscheinungsjahr
Zeitschriftentitel
BIOMEDICAL OPTICS EXPRESS
Band
8
Ausgabe
11
Seite(n)
4921-4932
ISSN
PUB-ID

Zitieren

Kong C, Pilger C, Hachmeister H, et al. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. BIOMEDICAL OPTICS EXPRESS. 2017;8(11):4921-4932.
Kong, C., Pilger, C., Hachmeister, H., Wei, X., Cheung, T. H., Lai, C. S. W., Huser, T., et al. (2017). Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. BIOMEDICAL OPTICS EXPRESS, 8(11), 4921-4932. doi:10.1364/BOE.8.004921
Kong, C., Pilger, C., Hachmeister, H., Wei, X., Cheung, T. H., Lai, C. S. W., Huser, T., Tsia, K. K., and Wong, K. K. Y. (2017). Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. BIOMEDICAL OPTICS EXPRESS 8, 4921-4932.
Kong, C., et al., 2017. Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. BIOMEDICAL OPTICS EXPRESS, 8(11), p 4921-4932.
C. Kong, et al., “Compact fs ytterbium fiber laser at 1010 nm for biomedical applications”, BIOMEDICAL OPTICS EXPRESS, vol. 8, 2017, pp. 4921-4932.
Kong, C., Pilger, C., Hachmeister, H., Wei, X., Cheung, T.H., Lai, C.S.W., Huser, T., Tsia, K.K., Wong, K.K.Y.: Compact fs ytterbium fiber laser at 1010 nm for biomedical applications. BIOMEDICAL OPTICS EXPRESS. 8, 4921-4932 (2017).
Kong, Cihang, Pilger, Christian, Hachmeister, Henning, Wei, Xiaoming, Cheung, Tom H., Lai, Cora S. W., Huser, Thomas, Tsia, Kevin. K., and Wong, Kenneth K. Y. “Compact fs ytterbium fiber laser at 1010 nm for biomedical applications”. BIOMEDICAL OPTICS EXPRESS 8.11 (2017): 4921-4932.

1 Zitation in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

46 References

Daten bereitgestellt von Europe PubMed Central.

Ytterbium-doped fibre amplifiers
Paschotta R., Nilsson J., Tropper A., Hanna D.., 1997
High power fiber lasers: current status and future perspectives [Invited]
Richardson D., Nilsson J., Clarkson W.., 2010
Compact, single-frequency all-fiber Q-switched laser at 1 microm.
Leigh M, Shi W, Zong J, Wang J, Jiang S, Peyghambarian N., Opt Lett 32(8), 2007
PMID: 17375146
Coherent beam combination of 1.08 kW fiber amplifier array using single frequency dithering technique.
Ma Y, Wang X, Leng J, Xiao H, Dong X, Zhu J, Du W, Zhou P, Xu X, Si L, Liu Z, Zhao Y., Opt Lett 36(6), 2011
PMID: 21403739
High-power femtosecond Yb-doped fiber amplifier.
Limpert J, Schreiber T, Clausnitzer T, Zollner K, Fuchs H, Kley E, Zellmer H, Tunnermann A., Opt Express 10(14), 2002
PMID: 19436409
Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W
Jeong Y., Nilsson J., Sahu J., Payne D., Horley R., Hickey L., Turner P.., 2007

AUTHOR UNKNOWN, 0
High-power fibre lasers
Jauregui C., Limpert J., Tünnermann A.., 2013
Ultrafast fibre lasers
Fermann M., Hartl I.., 2013
Recent Advances in Fiber Lasers for Nonlinear Microscopy.
Xu C, Wise FW., Nat Photonics 7(), 2013
PMID: 24416074
Highly efficient 980 nm operation of an Yb-doped silica fiber laser
Armitage J., Wyatt R., Ainsly B., Craig-Ryan S.., 1989
94 W 980 nm high brightness Yb-doped fiber laser.
Roser F, Jauregui C, Limpert J, Tunnermann A., Opt Express 16(22), 2008
PMID: 18958014
High power ytterbium-doped rod-type three-level photonic crystal fiber laser.
Boullet J, Zaouter Y, Desmarchelier R, Cazaux M, Salin F, Saby J, Bello-Doua R, Cormier E., Opt Express 16(22), 2008
PMID: 18958071
Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.
Krolopp A, Csakanyi A, Haluszka D, Csati D, Vass L, Kolonics A, Wikonkal N, Szipocs R., Biomed Opt Express 7(9), 2016
PMID: 27699118
Multicolor two-photon tissue imaging by wavelength mixing.
Mahou P, Zimmerley M, Loulier K, Matho KS, Labroille G, Morin X, Supatto W, Livet J, Debarre D, Beaurepaire E., Nat. Methods 9(8), 2012
PMID: 22772730
Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.
Fu D, Holtom G, Freudiger C, Zhang X, Xie XS., J Phys Chem B 117(16), 2013
PMID: 23256635
A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy.
Karpf S, Eibl M, Wieser W, Klein T, Huber R., Nat Commun 6(), 2015
PMID: 25881792
A 1014 nm linearly polarized low noise narrow-linewidth single-frequency fiber laser.
Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z., Opt Express 21(10), 2013
PMID: 23736460
A continuous wave 10 W cryogenic fiber amplifier at 1015 nm and frequency quadrupling to 254 nm.
Steinborn R, Koglbauer A, Bachor P, Diehl T, Kolbe D, Stappel M, Walz J., Opt Express 21(19), 2013
PMID: 24104156
High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump.
Xiao H, Leng J, Zhang H, Huang L, Xu J, Zhou P., Appl Opt 54(27), 2015
PMID: 26406520
1016nm all fiber picosecond MOPA laser with 50W output.
Qi X, Chen SP, Sun HY, Yang BK, Hou J., Opt Express 24(15), 2016
PMID: 27464139
Pulsed Yb³⁺-doped fiber laser operating at 1011 nm by intra-cavity phase modulation.
Jiang M, Zhou P, Xiao H, Tao R, Wang X., Appl Opt 53(10), 2014
PMID: 24787151
Intense few-cycle laser fields: Frontiers of nonlinear optics
Brabec T., Krausz F.., 2000
Airy-Bessel wave packets as versatile linear light bullets
Chong A., Renninger W., Christodoulides D., Wise F.., 2010
Femtosecond optical frequency combs
Cundiff S., Ye J.., 2003
Laser ablation and micromachining with ultrashort laser pulses
Liu X., Du D., Mourou G.., 1997
Multiphoton microscopy in life sciences.
Konig K., J Microsc 200(Pt 2), 2000
PMID: 11106949
Two-photon laser scanning fluorescence microscopy.
Denk W, Strickler JH, Webb WW., Science 248(4951), 1990
PMID: 2321027
Nonlinear magic: multiphoton microscopy in the biosciences.
Zipfel WR, Williams RM, Webb WW., Nat. Biotechnol. 21(11), 2003
PMID: 14595365
Über Elementarakte mit zwei Quantensprüngen
Göppert-Maier M.., 1931
Two-Photon Excitation in CaF2:Eu2+
Kaiser W., Garrett C.., 1961
Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser.
Perillo EP, McCracken JE, Fernee DC, Goldak JR, Medina FA, Miller DR, Yeh HC, Dunn AK., Biomed Opt Express 7(2), 2016
PMID: 26977343
Energetic ultrafast fiber laser sources tunable in 1030-1215 nm for deep tissue multi-photon microscopy.
Liu W, Chia SH, Chung HY, Greinert R, Kartner FX, Chang G., Opt Express 25(6), 2017
PMID: 28381024

Yang H.., 2014
87-W, 1018-nm Yb-fiber ultrafast seeding source for cryogenic Yb: YLF amplifier
Hua Y., Liu W., Hemmer M., Zapata L., Zhou G., Schimpf D., Eidam T., Limpert J., Tünnermann A., Kaertner F.., 2016
fs Mode-locked fiber laser continuously tunable from 976 nm to 1070 nm
Royon R., Lhermite J., Sarger L., Cormier E.., 2013
Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range.
Okhotnikov OG, Gomes L, Xiang N, Jouhti T, Grudinin AB., Opt Lett 28(17), 2003
PMID: 12956366
Fourier-Limited 19-ps Yb-Fiber Seeder Stabilized by Spectral Filtering and Tunable Between 1015 and 1085 nm
Agnesi A., Carrà L., Di C., Piccoli R., Reali G.., 2012
77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser.
Tamura K, Ippen EP, Haus HA, Nelson LE., Opt Lett 18(13), 1993
PMID: 19823296
All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ.
Chong A, Renninger WH, Wise FW., Opt Lett 32(16), 2007
PMID: 17700801

Pologruto T., Sabatini B., Svoboda K.., 0
Compression of amplified chirped optical pulses
Strickland D., Mourou G.., 1985

AUTHOR UNKNOWN, 0
Deep tissue multiphoton microscopy using longer wavelength excitation.
Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C., Opt Express 17(16), 2009
PMID: 19654740
Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.
Carriles R, Schafer DN, Sheetz KE, Field JJ, Cisek R, Barzda V, Sylvester AW, Squier JA., Rev Sci Instrum 80(8), 2009
PMID: 19725639

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29188091
PubMed | Europe PMC

Suchen in

Google Scholar