Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation

Schnepel C, Sewald N (2017)
Chemistry - A European Journal 23(50): 12064-12086.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Halogenating enzymes are increasingly attracting attention for biocatalytic C-H functionalization. Despite its importance for synthetic chemistry, selective introduction of halogens using conventional approaches often remains challenging, whereas biocatalysis offers excellent catalyst-controlled selectivity without requiring protecting groups or hazardous reagents. Owing to the high prevalence of halogenated secondary metabolites, a still growing repertoire of halogenases has been identified. Recently, flavin-dependent tryptophan halogenases came into focus for synthetic use. Nevertheless, these enzymes still suffer from severe deficiencies. Herein, current attempts in optimizing tryptophan halogenases have been compiled. Enzyme discovery, structure elucidation and mechanisms are reviewed with focus on biosynthesis of halogenated arenes. Emphasis is also given to random and rational engineering, high-throughput screening and implementation of halogenases into one-pot processes.
biocatalysis; halogenase; one-pot synthesis; oxidoreductase; protein; engineering
Chemistry - A European Journal
Page URI


Schnepel C, Sewald N. Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation. Chemistry - A European Journal. 2017;23(50):12064-12086.
Schnepel, C., & Sewald, N. (2017). Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation. Chemistry - A European Journal, 23(50), 12064-12086. https://doi.org/10.1002/chem.201701209
Schnepel, Christian, and Sewald, Norbert. 2017. “Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation”. Chemistry - A European Journal 23 (50): 12064-12086.
Schnepel, C., and Sewald, N. (2017). Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation. Chemistry - A European Journal 23, 12064-12086.
Schnepel, C., & Sewald, N., 2017. Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation. Chemistry - A European Journal, 23(50), p 12064-12086.
C. Schnepel and N. Sewald, “Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation”, Chemistry - A European Journal, vol. 23, 2017, pp. 12064-12086.
Schnepel, C., Sewald, N.: Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation. Chemistry - A European Journal. 23, 12064-12086 (2017).
Schnepel, Christian, and Sewald, Norbert. “Enzymatic Halogenation: A Timely Strategy for Regioselective C-H Activation”. Chemistry - A European Journal 23.50 (2017): 12064-12086.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Straightforward Regeneration of Reduced Flavin Adenine Dinucleotide Required for Enzymatic Tryptophan Halogenation.
Ismail M, Schroeder L, Frese M, Kottke T, Hollmann F, Paul CE, Sewald N., ACS Catal 9(2), 2019
PMID: 30775067
Halogenase engineering and its utility in medicinal chemistry.
Fraley AE, Sherman DH., Bioorg Med Chem Lett 28(11), 2018
PMID: 29731363
A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination.
Neubauer PR, Widmann C, Wibberg D, Schröder L, Frese M, Kottke T, Kalinowski J, Niemann HH, Sewald N., PLoS One 13(5), 2018
PMID: 29746521
Biocatalytic Oxidation Reactions: A Chemist's Perspective.
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W., Angew Chem Int Ed Engl 57(30), 2018
PMID: 29573076
Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities.
Heine T, van Berkel WJH, Gassner G, van Pée KH, Tischler D., Biology (Basel) 7(3), 2018
PMID: 30072664
Does Substrate Positioning Affect the Selectivity and Reactivity in the Hectochlorin Biosynthesis Halogenase?
Timmins A, Fowler NJ, Warwicker J, Straganz GD, de Visser SP., Front Chem 6(), 2018
PMID: 30425979

95 References

Daten bereitgestellt von Europe PubMed Central.

Industrial biocatalysis today and tomorrow.
Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B., Nature 409(6817), 2001
PMID: 11196655
Recent progress in industrial biocatalysis.
Nestl BM, Nebel BA, Hauer B., Curr Opin Chem Biol 15(2), 2010
PMID: 21195018

Bruggink, Chimia 50(), 1996
Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture.
Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ., Science 329(5989), 2010
PMID: 20558668
Engineering the third wave of biocatalysis.
Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K., Nature 485(7397), 2012
PMID: 22575958
The taming of oxygen: biocatalytic oxyfunctionalisations.
Holtmann D, Fraaije MW, Arends IW, Opperman DJ, Hollmann F., Chem. Commun. (Camb.) 50(87), 2014
PMID: 24902635
Modern Transition-Metal-Catalyzed Carbon-Halogen Bond Formation.
Petrone DA, Ye J, Lautens M., Chem. Rev. 116(14), 2016
PMID: 27341176

Gribble, Environ. Chem. 12(), 2015

Gribble, J. Chem. Educ. 81(), 2004
Cryptophycin: a new antimicrotubule agent active against drug-resistant cells.
Smith CD, Zhang X, Mooberry SL, Patterson GM, Moore RE., Cancer Res. 54(14), 1994
PMID: 7913408

Gribble, Chem. Soc. Rev. 28(), 1999
Crystal structure and mechanism of a bacterial fluorinating enzyme.
Dong C, Huang F, Deng H, Schaffrath C, Spencer JB, O'Hagan D, Naismith JH., Nature 427(6974), 2004
PMID: 14765200
SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase.
Vaillancourt FH, Yin J, Walsh CT., Proc. Natl. Acad. Sci. U.S.A. 102(29), 2005
PMID: 16002467
Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis.
Blasiak LC, Vaillancourt FH, Walsh CT, Drennan CL., Nature 440(7082), 2006
PMID: 16541079
A new family of iron-dependent halogenases acts on freestanding substrates.
Hillwig ML, Liu X., Nat. Chem. Biol. 10(11), 2014
PMID: 25218740

Hohaus, Angew. Chem. Int. Ed. Engl. 36(), 1997

AUTHOR UNKNOWN, Angew. Chem. 109(), 1997

AUTHOR UNKNOWN, Angew. Chem. 112(), 2000
The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives.
Sanchez C, Butovich IA, Brana AF, Rohr J, Mendez C, Salas JA., Chem. Biol. 9(4), 2002
PMID: 11983340
Enzymatic assembly of the bis-indole core of rebeccamycin.
Nishizawa T, Gruschow S, Jayamaha DH, Nishizawa-Harada C, Sherman DH., J. Am. Chem. Soc. 128(3), 2006
PMID: 16417354
Production and biological activity of rebeccamycin, a novel antitumor agent.
Bush JA, Long BH, Catino JJ, Bradner WT, Tomita K., J. Antibiot. 40(5), 1987
PMID: 3112080
Pyrroindomycins, novel antibiotics produced by Streptomyces rugosporus sp. LL-42D005. I. Isolation and structure determination.
Ding W, Williams DR, Northcote P, Siegel MM, Tsao R, Ashcroft J, Morton GO, Alluri M, Abbanat D, Maiese WM., J. Antibiot. 47(11), 1994
PMID: 8002387
A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005.
Zehner S, Kotzsch A, Bister B, Sussmuth RD, Mendez C, Salas JA, van Pee KH., Chem. Biol. 12(4), 2005
PMID: 15850981

Seibold, Biocatal. Biotransform. 24(), 2006
A tryptophan 6-halogenase and an amidotransferase are involved in thienodolin biosynthesis.
Milbredt D, Patallo EP, van Pee KH., Chembiochem 15(7), 2014
PMID: 24692213
Characterization of a tryptophan 6-halogenase from Streptomyces toxytricini.
Zeng J, Zhan J., Biotechnol. Lett. 33(8), 2011
PMID: 21424165
Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes.
Foulston LC, Bibb MJ., Proc. Natl. Acad. Sci. U.S.A. 107(30), 2010
PMID: 20628010
Two Flavoenzymes Catalyze the Post-Translational Generation of 5-Chlorotryptophan and 2-Aminovinyl-Cysteine during NAI-107 Biosynthesis.
Ortega MA, Cogan DP, Mukherjee S, Garg N, Li B, Thibodeaux GN, Maffioli SI, Donadio S, Sosio M, Escano J, Smith L, Nair SK, van der Donk WA., ACS Chem. Biol. 12(2), 2017
PMID: 28032983
Structure and biocatalytic scope of thermophilic flavin-dependent halogenase and flavin reductase enzymes.
Menon BR, Latham J, Dunstan MS, Brandenburger E, Klemstein U, Leys D, Karthikeyan C, Greaney MF, Shepherd SA, Micklefield J., Org. Biomol. Chem. 14(39), 2016
PMID: 27714222
Crystallization and X-ray diffraction of a halogenating enzyme, tryptophan 7-halogenase, from Pseudomonas fluorescens.
Dong C, Kotzsch A, Dorward M, van Pee KH, Naismith JH., Acta Crystallogr. D Biol. Crystallogr. 60(Pt 8), 2004
PMID: 15272170
Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination.
Dong C, Flecks S, Unversucht S, Haupt C, van Pee KH, Naismith JH., Science 309(5744), 2005
PMID: 16195462
The structure of flavin-dependent tryptophan 7-halogenase RebH.
Bitto E, Huang Y, Bingman CA, Singh S, Thorson JS, Phillips GN Jr., Proteins 70(1), 2008
PMID: 17876823
Flavin dependent monooxygenases.
Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ., Arch. Biochem. Biophys. 544(), 2013
PMID: 24361254
Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH.
Yeh E, Cole LJ, Barr EW, Bollinger JM Jr, Ballou DP, Walsh CT., Biochemistry 45(25), 2006
PMID: 16784243
Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases.
Yeh E, Blasiak LC, Koglin A, Drennan CL, Walsh CT., Biochemistry 46(5), 2007
PMID: 17260957
New insights into the mechanism of enzymatic chlorination of tryptophan.
Flecks S, Patallo EP, Zhu X, Ernyei AJ, Seifert G, Schneider A, Dong C, Naismith JH, van Pee KH., Angew. Chem. Int. Ed. Engl. 47(49), 2008
PMID: 18979475

AUTHOR UNKNOWN, Angew. Chem. 120(), 2008
Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
Zhu X, De Laurentis W, Leang K, Herrmann J, Ihlefeld K, van Pee KH, Naismith JH., J. Mol. Biol. 391(1), 2009
PMID: 19501593
A Structure-Guided Switch in the Regioselectivity of a Tryptophan Halogenase.
Shepherd SA, Menon BR, Fisk H, Struck AW, Levy C, Leys D, Micklefield J., Chembiochem 17(9), 2016
PMID: 26840773
Structure and action of the myxobacterial chondrochloren halogenase CndH: a new variant of FAD-dependent halogenases.
Buedenbender S, Rachid S, Muller R, Schulz GE., J. Mol. Biol. 385(2), 2008
PMID: 19000696
Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
Podzelinska K, Latimer R, Bhattacharya A, Vining LC, Zechel DL, Jia Z., J. Mol. Biol. 397(1), 2010
PMID: 20080101
Molecular and biochemical studies of chondramide formation-highly cytotoxic natural products from Chondromyces crocatus Cm c5.
Rachid S, Krug D, Kunze B, Kochems I, Scharfe M, Zabriskie TM, Blocker H, Muller R., Chem. Biol. 13(6), 2006
PMID: 16793524
Bis-chlorination of a hexapeptide-PCP conjugate by the halogenase involved in vancomycin biosynthesis.
Schmartz PC, Zerbe K, Abou-Hadeed K, Robinson JA., Org. Biomol. Chem. 12(30), 2014
PMID: 24756572
Regioselective arene halogenation using the FAD-dependent halogenase RebH.
Payne JT, Andorfer MC, Lewis JC., Angew. Chem. Int. Ed. Engl. 52(20), 2013
PMID: 23592388

AUTHOR UNKNOWN, Angew. Chem. 125(), 2013

Frese, ChemCatChem 6(), 2014
Enzyme immobilisation in biocatalysis: why, what and how.
Sheldon RA, van Pelt S., Chem Soc Rev 42(15), 2013
PMID: 23532151
Enzymatic halogenation of tryptophan on a gram scale.
Frese M, Sewald N., Angew. Chem. Int. Ed. Engl. 54(1), 2014
PMID: 25394328

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C-H activation.
Latham J, Henry JM, Sharif HH, Menon BR, Shepherd SA, Greaney MF, Micklefield J., Nat Commun 7(), 2016
PMID: 27283121

Hölzer, Adv. Synth. Catal. 343(), 2001
A convenient enzymatic synthesis of L-halotryptophans.
Goss RJ, Newill PL., Chem. Commun. (Camb.) (47), 2006
PMID: 17136248
The first one-pot synthesis of L-7-iodotryptophan from 7-iodoindole and serine, and an improved synthesis of other L-7-halotryptophans.
Smith DR, Willemse T, Gkotsi DS, Schepens W, Maes BU, Ballet S, Goss RJ., Org. Lett. 16(10), 2014
PMID: 24805161

Shepherd, Chem. Sci. 6(), 2015
Understanding Flavin-Dependent Halogenase Reactivity via Substrate Activity Profiling.
Andorfer MC, Grob JE, Hajdin CE, Chael JR, Siuti P, Lilly J, Tan KL, Lewis JC., ACS Catal 7(3), 2017
PMID: 28989809
Directed evolution drives the next generation of biocatalysts.
Turner NJ., Nat. Chem. Biol. 5(8), 2009
PMID: 19620998
Directed Evolution of RebH for Catalyst-Controlled Halogenation of Indole C-H Bonds.
Andorfer MC, Park HJ, Vergara-Coll J, Lewis JC., Chem Sci 7(6), 2016
PMID: 27347367
A High-Throughput Fluorescence Assay to Determine the Activity of Tryptophan Halogenases.
Schnepel C, Minges H, Frese M, Sewald N., Angew. Chem. Int. Ed. Engl. 55(45), 2016
PMID: 27618794

AUTHOR UNKNOWN, Angew. Chem. 128(), 2016
Protein stability promotes evolvability.
Bloom JD, Labthavikul ST, Otey CR, Arnold FH., Proc. Natl. Acad. Sci. U.S.A. 103(15), 2006
PMID: 16581913
Improving the stability and catalyst lifetime of the halogenase RebH by directed evolution.
Poor CB, Andorfer MC, Lewis JC., Chembiochem 15(9), 2014
PMID: 24849696
Directed evolution of RebH for site-selective halogenation of large biologically active molecules.
Payne JT, Poor CB, Lewis JC., Angew. Chem. Int. Ed. Engl. 54(14), 2015
PMID: 25678465

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis.
Lang A, Polnick S, Nicke T, William P, Patallo EP, Naismith JH, van Pee KH., Angew. Chem. Int. Ed. Engl. 50(13), 2011
PMID: 21404376

AUTHOR UNKNOWN, Angew. Chem. 123(), 2011
Combinatorial biosynthesis of antitumor indolocarbazole compounds.
Sanchez C, Zhu L, Brana AF, Salas AP, Rohr J, Mendez C, Salas JA., Proc. Natl. Acad. Sci. U.S.A. 102(2), 2004
PMID: 15625109
Use of a halogenase of hormaomycin biosynthesis for formation of new clorobiocin analogues with 5-chloropyrrole moieties.
Heide L, Westrich L, Anderle C, Gust B, Kammerer B, Piel J., Chembiochem 9(12), 2008
PMID: 18655076
Chemistry and biology of monoterpene indole alkaloid biosynthesis.
O'Connor SE, Maresh JJ., Nat Prod Rep 23(4), 2006
PMID: 16874388
Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus.
McCoy E, O'Connor SE., J. Am. Chem. Soc. 128(44), 2006
PMID: 17076499
Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle.
Bernhardt P, McCoy E, O'Connor SE., Chem. Biol. 14(8), 2007
PMID: 17719488
Integrating carbon-halogen bond formation into medicinal plant metabolism.
Runguphan W, Qu X, O'Connor SE., Nature 468(7322), 2010
PMID: 21048708
Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
Glenn WS, Nims E, O'Connor SE., J. Am. Chem. Soc. 133(48), 2011
PMID: 22050348

AUTHOR UNKNOWN, Angew. Chem. 120(), 2008

Tenbrink, Adv. Synth. Catal. 353(), 2011

de, 2004
Diversification of monoterpene indole alkaloid analogs through cross-coupling.
Runguphan W, O'Connor SE., Org. Lett. 15(11), 2013
PMID: 23713451

Frese, ChemCatChem 8(), 2016
Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water.
Corr MJ, Sharma SV, Pubill-Ulldemolins C, Bown RT, Poirot P, Smith DRM, Cartmell C, Abou Fayad A, Goss RJM., Chem Sci 8(3), 2016
PMID: 28451322

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015
Material in PUB:
Teil dieser Dissertation

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 28464370
PubMed | Europe PMC

Suchen in

Google Scholar