Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H (2017)
Brain, Behavior and Evolution 90(2): 98-116.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chagnaud, Boris P.;
Engelmann, JacobUniBi ;
Fritzsch, Bernd;
Glover, Joel C.;
Straka, Hans
Einrichtung
Erscheinungsjahr
2017
Zeitschriftentitel
Brain, Behavior and Evolution
Band
90
Ausgabe
2
Seite(n)
98-116
ISSN
1421-9743
Page URI
https://pub.uni-bielefeld.de/record/2914661
Zitieren
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution. 2017;90(2):98-116.
Chagnaud, B. P., Engelmann, J., Fritzsch, B., Glover, J. C., & Straka, H. (2017). Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution, 90(2), 98-116. doi:10.1159/000456646
Chagnaud, Boris P., Engelmann, Jacob, Fritzsch, Bernd, Glover, Joel C., and Straka, Hans. 2017. “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”. Brain, Behavior and Evolution 90 (2): 98-116.
Chagnaud, B. P., Engelmann, J., Fritzsch, B., Glover, J. C., and Straka, H. (2017). Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution 90, 98-116.
Chagnaud, B.P., et al., 2017. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution, 90(2), p 98-116.
B.P. Chagnaud, et al., “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”, Brain, Behavior and Evolution, vol. 90, 2017, pp. 98-116.
Chagnaud, B.P., Engelmann, J., Fritzsch, B., Glover, J.C., Straka, H.: Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution. 90, 98-116 (2017).
Chagnaud, Boris P., Engelmann, Jacob, Fritzsch, Bernd, Glover, Joel C., and Straka, Hans. “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”. Brain, Behavior and Evolution 90.2 (2017): 98-116.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
9 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G., J Neurosci 39(6), 2019
PMID: 30541910
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G., J Neurosci 39(6), 2019
PMID: 30541910
Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system
Fritzsch B, Elliott KL, Pavlinkova G., 2019
PMID: PPR74292
Fritzsch B, Elliott KL, Pavlinkova G., 2019
PMID: PPR74292
Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system.
Fritzsch B, Elliott KL, Pavlinkova G., F1000Res 8(), 2019
PMID: 30984379
Fritzsch B, Elliott KL, Pavlinkova G., F1000Res 8(), 2019
PMID: 30984379
Topologically correct central projections of tetrapod inner ear afferents require Fzd3.
Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL., Sci Rep 9(1), 2019
PMID: 31311957
Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL., Sci Rep 9(1), 2019
PMID: 31311957
Differentiation and Induced Sensorial Alteration of the Coronal Organ in the Asexual Life of a Tunicate.
Manni L, Anselmi C, Burighel P, Martini M, Gasparini F., Integr Comp Biol 58(2), 2018
PMID: 29873734
Manni L, Anselmi C, Burighel P, Martini M, Gasparini F., Integr Comp Biol 58(2), 2018
PMID: 29873734
Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Hair Cells.
Elliott KL, Fritzsch B, Duncan JS., Front Cell Neurosci 12(), 2018
PMID: 30135646
Elliott KL, Fritzsch B, Duncan JS., Front Cell Neurosci 12(), 2018
PMID: 30135646
Synaptic convergence of afferent inputs in primary infrared-sensitive nucleus (LTTD) neurons of rattlesnakes (Crotalinae) as the origin for sensory contrast enhancement.
Bothe MS, Luksch H, Straka H, Kohl T., J Exp Biol 221(pt 17), 2018
PMID: 30037882
Bothe MS, Luksch H, Straka H, Kohl T., J Exp Biol 221(pt 17), 2018
PMID: 30037882
Ear transplantations reveal conservation of inner ear afferent pathfinding cues.
Elliott KL, Fritzsch B., Sci Rep 8(1), 2018
PMID: 30218045
Elliott KL, Fritzsch B., Sci Rep 8(1), 2018
PMID: 30218045
Conserved and divergent development of brainstem vestibular and auditory nuclei.
Lipovsek M, Wingate RJ., Elife 7(), 2018
PMID: 30566077
Lipovsek M, Wingate RJ., Elife 7(), 2018
PMID: 30566077
156 References
Daten bereitgestellt von Europe PubMed Central.
Somatotopy of the lateral line projection in larval zebrafish.
Alexandre D, Ghysen A., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377454
Alexandre D, Ghysen A., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377454
Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum
Bartels M, Münz H, Claas B., 1990
Bartels M, Münz H, Claas B., 1990
Number and distribution of superficial neuromasts in twelve common european cypriniform fishes and their relationship to habitat occurrence
Beckmann M, Erős T, Schmitz A, Bleckmann H., 2010
Beckmann M, Erős T, Schmitz A, Bleckmann H., 2010
Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
Behrend O, Branoner F, Zhivkov Z, Ziehm U., Eur. J. Neurosci. 23(3), 2006
PMID: 16487154
Behrend O, Branoner F, Zhivkov Z, Ziehm U., Eur. J. Neurosci. 23(3), 2006
PMID: 16487154
Proprioceptor pathway development is dependent on Math1.
Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY, Bellen HJ., Neuron 30(2), 2001
PMID: 11395003
Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY, Bellen HJ., Neuron 30(2), 2001
PMID: 11395003
Location of dye-coupled second order and of efferent vestibular neurons labeled from individual semicircular canal or otolith organs in the frog.
Birinyi A, Straka H, Matesz C, Dieringer N., Brain Res. 921(1-2), 2001
PMID: 11720710
Birinyi A, Straka H, Matesz C, Dieringer N., Brain Res. 921(1-2), 2001
PMID: 11720710
Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp.
Bleckmann H, Niemann U, Fritzsch B., J. Comp. Neurol. 314(3), 1991
PMID: 1726106
Bleckmann H, Niemann U, Fritzsch B., J. Comp. Neurol. 314(3), 1991
PMID: 1726106
Bleckmann H, Mogdans J, Coombs SL., 2014
Molecular basis of otic commitment and morphogenesis: a role for homeodomain-containing transcription factors and signaling molecules.
Bober E, Rinkwitz S, Herbrand H., Curr. Top. Dev. Biol. 57(), 2003
PMID: 14674480
Bober E, Rinkwitz S, Herbrand H., Curr. Top. Dev. Biol. 57(), 2003
PMID: 14674480
Efferent vestibular system in the toadfish: action upon horizontal semicircular canal afferents.
Boyle R, Highstein SM., J. Neurosci. 10(5), 1990
PMID: 2332798
Boyle R, Highstein SM., J. Neurosci. 10(5), 1990
PMID: 2332798
Semicircular canal-dependent developmental tuning of translational vestibulo-ocular reflexes in Xenopus laevis.
Branoner F, Straka H., Dev Neurobiol 75(10), 2014
PMID: 25266079
Branoner F, Straka H., Dev Neurobiol 75(10), 2014
PMID: 25266079
Early efferent innervation of the zebrafish lateral line.
Bricaud O, Chaar V, Dambly-Chaudiere C, Ghysen A., J. Comp. Neurol. 434(3), 2001
PMID: 11331527
Bricaud O, Chaar V, Dambly-Chaudiere C, Ghysen A., J. Comp. Neurol. 434(3), 2001
PMID: 11331527
Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H., J. Neurosci. 28(17), 2008
PMID: 18434526
Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H., J. Neurosci. 28(17), 2008
PMID: 18434526
Spinal corollary discharge modulates motion sensing during vertebrate locomotion.
Chagnaud BP, Banchi R, Simmers J, Straka H., Nat Commun 6(), 2015
PMID: 26337184
Chagnaud BP, Banchi R, Simmers J, Straka H., Nat Commun 6(), 2015
PMID: 26337184
Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors.
Chen J, Streit A., Hear. Res. 297(), 2012
PMID: 23194992
Chen J, Streit A., Hear. Res. 297(), 2012
PMID: 23194992
Eye-specific termination bands in tecta of three-eyed frogs.
Constantine-Paton M, Law MI., Science 202(4368), 1978
PMID: 309179
Constantine-Paton M, Law MI., Science 202(4368), 1978
PMID: 309179
Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi.
Coombs S, Janssen J., J. Comp. Physiol. A 167(4), 1990
PMID: 2277359
Coombs S, Janssen J., J. Comp. Physiol. A 167(4), 1990
PMID: 2277359
Function and evolution of superficial neuromasts in an Antarctic notothenioid fish.
Coombs S, Montgomery J., Brain Behav. Evol. 44(6), 1994
PMID: 7881995
Coombs S, Montgomery J., Brain Behav. Evol. 44(6), 1994
PMID: 7881995
Dabdoub A, Fritzsch B, Popper AN, Fay RR., 2016
Zur Vergleichenden Anatomie der Labyrinthinnervation
de HM., 1929
de HM., 1929
Mechanical factors in the excitation of clupeid lateral lines.
Denton EJ, Gray J., Proc. R. Soc. Lond., B, Biol. Sci. 218(1210), 1983
PMID: 6135206
Denton EJ, Gray J., Proc. R. Soc. Lond., B, Biol. Sci. 218(1210), 1983
PMID: 6135206
Mechanical factors in the excitation of the lateral lines of fishes
Denton EJ, Gray JAB., 1988
Denton EJ, Gray JAB., 1988
Some observations on the forces acting on neuromasts in fish lateral line canals
Denton EJ, Gray JAB., 1989
Denton EJ, Gray JAB., 1989
Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M., PLoS Genet. 9(2), 2013
PMID: 23408898
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M., PLoS Genet. 9(2), 2013
PMID: 23408898
Loss of projections, functional compensation, and residual deficits in the mammalian vestibulospinal system of Hoxb1-deficient mice
Di M, Boulland J-L, Krezel W, Setti E, Studer M, Glover JC., 2015
Di M, Boulland J-L, Krezel W, Setti E, Studer M, Glover JC., 2015
The relationship between rhombomeres and vestibular neuron populations as assessed in quail-chicken chimeras.
Diaz C, Puelles L, Marin F, Glover JC., Dev. Biol. 202(1), 1998
PMID: 9758700
Diaz C, Puelles L, Marin F, Glover JC., Dev. Biol. 202(1), 1998
PMID: 9758700
The functioning and significance of the lateral-line organs.
DIJKGRAAF S., Biol Rev Camb Philos Soc 38(), 1963
PMID: 14027866
DIJKGRAAF S., Biol Rev Camb Philos Soc 38(), 1963
PMID: 14027866
Continued expression of GATA3 is necessary for cochlear neurosensory development.
Duncan JS, Fritzsch B., PLoS ONE 8(4), 2013
PMID: 23614009
Duncan JS, Fritzsch B., PLoS ONE 8(4), 2013
PMID: 23614009
Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord
Elliott KL, Fritzsch B., 2011
Elliott KL, Fritzsch B., 2011
Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons.
Elliott KL, Houston DW, DeCook R, Fritzsch B., Dev Neurobiol 75(12), 2015
PMID: 25787878
Elliott KL, Houston DW, DeCook R, Fritzsch B., Dev Neurobiol 75(12), 2015
PMID: 25787878
Sensory afferent segregation in three-eared frogs resemble the dominance columns observed in three-eyed frogs.
Elliott KL, Houston DW, Fritzsch B., Sci Rep 5(), 2015
PMID: 25661240
Elliott KL, Houston DW, Fritzsch B., Sci Rep 5(), 2015
PMID: 25661240
Lateral line reception in still- and running water
Engelmann J, Hanke W, Bleckmann H., 2002
Engelmann J, Hanke W, Bleckmann H., 2002
Coding of lateral line stimuli in the goldfish midbrain in still and running water.
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Welcome to Neural Development.
Lumsden A, Harris B, Sanes JR, Wong R., Neural Dev 1(), 2006
PMID: PMC1636331
Lumsden A, Harris B, Sanes JR, Wong R., Neural Dev 1(), 2006
PMID: PMC1636331
Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation.
Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H., PLoS ONE 4(2), 2009
PMID: 19223970
Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H., PLoS ONE 4(2), 2009
PMID: 19223970
A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors.
FLOCK A, WERSALL J., J. Cell Biol. 15(), 1962
PMID: 13945569
FLOCK A, WERSALL J., J. Cell Biol. 15(), 1962
PMID: 13945569
Dual embryonic origin of the mammalian otic vesicle forming the inner ear.
Freyer L, Aggarwal V, Morrow BE., Development 138(24), 2011
PMID: 22110056
Freyer L, Aggarwal V, Morrow BE., Development 138(24), 2011
PMID: 22110056
Metamorphic changes in the octavolateralis system of amphibians
Fritzsch B, Wahnschaffe U, Bartsch U., 1988
Fritzsch B, Wahnschaffe U, Bartsch U., 1988
A discrete projection of the sacculus and lagena to a distinct brainstem nucleus in a catfish.
Fritzsch B, Niemann U, Bleckmann H., Neurosci. Lett. 111(1-2), 1990
PMID: 2336194
Fritzsch B, Niemann U, Bleckmann H., Neurosci. Lett. 111(1-2), 1990
PMID: 2336194
On the coincidence of loss of electroreception and reorganization of brain stem nuclei in vertebrates
Fritzsch B., 1991
Fritzsch B., 1991
Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds
Fritzsch B, Sarai P, Barbacid M, Silos-Santiago I., 1997
Fritzsch B, Sarai P, Barbacid M, Silos-Santiago I., 1997
Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies.
Fritzsch B, Beisel KW, Bermingham NA, Fritzsch B., Neuroreport 11(17), 2000
PMID: 11117521
Fritzsch B, Beisel KW, Bermingham NA, Fritzsch B., Neuroreport 11(17), 2000
PMID: 11117521
Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears.
Fritzsch B, Signore M, Simeone A, Fritzsch B., Dev. Genes Evol. 211(8-9), 2001
PMID: 11685572
Fritzsch B, Signore M, Simeone A, Fritzsch B., Dev. Genes Evol. 211(8-9), 2001
PMID: 11685572
Evolution and development of the vertebrate ear.
Fritzsch B, Beisel KW, Fritzsch B., Brain Res. Bull. 55(6), 2001
PMID: 11595355
Fritzsch B, Beisel KW, Fritzsch B., Brain Res. Bull. 55(6), 2001
PMID: 11595355
The development of the hindbrain afferent projections in the axolotl: evidence for timing as a specific mechanism of afferent fiber sorting.
Fritzsch B, Gregory D, Rosa-Molinar E., Zoology (Jena) 108(4), 2005
PMID: 16351978
Fritzsch B, Gregory D, Rosa-Molinar E., Zoology (Jena) 108(4), 2005
PMID: 16351978
The molecular and developmental basis of the evolution of the vertebrate auditory system
Fritzsch B, Pauley S, Feng F, Matei V, Nichols D., 2006
Fritzsch B, Pauley S, Feng F, Matei V, Nichols D., 2006
Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes
Fritzsch B, Glover J., 2007
Fritzsch B, Glover J., 2007
The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis.
Fritzsch B, Eberl DF, Beisel KW., Cell. Mol. Life Sci. 67(18), 2010
PMID: 20495996
Fritzsch B, Eberl DF, Beisel KW., Cell. Mol. Life Sci. 67(18), 2010
PMID: 20495996
Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective.
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T., Evol. Dev. 15(1), 2013
PMID: 23331918
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T., Evol. Dev. 15(1), 2013
PMID: 23331918
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies
Fritzsch B, Straka H., 2014
Fritzsch B, Straka H., 2014
Evolution of polarized hair cells in aquatic vertebrates and their connection to directionally sensitive neurons
Fritzsch B, López-Schier H., 2014
Fritzsch B, López-Schier H., 2014
Evolving gene regulatory networks into cellular networks guiding adaptive behavior: an outline how single cells could have evolved into a centralized neurosensory system.
Fritzsch B, Jahan I, Pan N, Elliott KL., Cell Tissue Res. 359(1), 2014
PMID: 25416504
Fritzsch B, Jahan I, Pan N, Elliott KL., Cell Tissue Res. 359(1), 2014
PMID: 25416504
Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L., 2013
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L., 2013
Making sense of zebrafish neural development in the Minervois.
Ghysen A, Dambly-Chaudiere C, Raible D., Neural Dev 2(), 2007
PMID: 17686145
Ghysen A, Dambly-Chaudiere C, Raible D., Neural Dev 2(), 2007
PMID: 17686145
Lateral line receptors: where do they come from developmentally and where is our research going?
Gibbs MA., Brain Behav. Evol. 64(3), 2004
PMID: 15353908
Gibbs MA., Brain Behav. Evol. 64(3), 2004
PMID: 15353908
A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.
Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ., J. Comp. Neurol. 522(10), 2014
PMID: 24452830
Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ., J. Comp. Neurol. 522(10), 2014
PMID: 24452830
Neuroepithelial 'compartments' and the specification of vestibular projections.
Glover JC., Prog. Brain Res. 124(), 2000
PMID: 10943113
Glover JC., Prog. Brain Res. 124(), 2000
PMID: 10943113
Correlated patterns of neuron differentiation and Hox gene expression in the hindbrain: a comparative analysis.
Glover JC., Brain Res. Bull. 55(6), 2001
PMID: 11595353
Glover JC., Brain Res. Bull. 55(6), 2001
PMID: 11595353
Retinoic acid and hindbrain patterning.
Glover JC, Renaud JS, Rijli FM., J. Neurobiol. 66(7), 2006
PMID: 16688767
Glover JC, Renaud JS, Rijli FM., J. Neurobiol. 66(7), 2006
PMID: 16688767
Afferent diversity and the organization of central vestibular pathways.
Goldberg JM., Exp Brain Res 130(3), 2000
PMID: 10706428
Goldberg JM., Exp Brain Res 130(3), 2000
PMID: 10706428
Early development of the spiral ganglion
Goodrich LV., 2016
Goodrich LV., 2016
Object localization through the lateral line system of fish: theory and experiment
Goulet J, Engelmann J, Chagnaud B, Franosch J-M, Suttner M, van J., 2008
Goulet J, Engelmann J, Chagnaud B, Franosch J-M, Suttner M, van J., 2008
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J. Neurophysiol. 107(10), 2012
PMID: 22378175
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J. Neurophysiol. 107(10), 2012
PMID: 22378175
Neuroanatomical and histochemical evidence for the presence of common lateral line and inner ear efferents and of efferents to the basilar papilla in a frog, Xenopus laevis.
Hellmann B, Fritzsch B., Brain Behav. Evol. 47(4), 1996
PMID: 9156781
Hellmann B, Fritzsch B., Brain Behav. Evol. 47(4), 1996
PMID: 9156781
Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau.
Highstein SM, Baker R., J. Neurophysiol. 54(2), 1985
PMID: 4031993
Highstein SM, Baker R., J. Neurophysiol. 54(2), 1985
PMID: 4031993
Determinants of spatial and temporal coding by semicircular canal afferents.
Highstein SM, Rabbitt RD, Holstein GR, Boyle RD., J. Neurophysiol. 93(5), 2005
PMID: 15845995
Highstein SM, Rabbitt RD, Holstein GR, Boyle RD., J. Neurophysiol. 93(5), 2005
PMID: 15845995
Plasticity of ocular dominance columns in monkey striate cortex.
Hubel DH, Wiesel TN, LeVay S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 278(961), 1977
PMID: 19791
Hubel DH, Wiesel TN, LeVay S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 278(961), 1977
PMID: 19791
How the ear's works work: mechanoelectrical transduction and amplification by hair cells.
Hudspeth AJ., C. R. Biol. 328(2), 2005
PMID: 15771001
Hudspeth AJ., C. R. Biol. 328(2), 2005
PMID: 15771001
Loss of Ptf1a Leads to a Widespread Cell-Fate Misspecification in the Brainstem, Affecting the Development of Somatosensory and Viscerosensory Nuclei.
Iskusnykh IY, Steshina EY, Chizhikov VV., J. Neurosci. 36(9), 2016
PMID: 26937009
Iskusnykh IY, Steshina EY, Chizhikov VV., J. Neurosci. 36(9), 2016
PMID: 26937009
Neurod1 regulates survival and formation of connections in mouse ear and brain.
Jahan I, Kersigo J, Pan N, Fritzsch B., Cell Tissue Res. 341(1), 2010
PMID: 20512592
Jahan I, Kersigo J, Pan N, Fritzsch B., Cell Tissue Res. 341(1), 2010
PMID: 20512592
Opportunities and limits of the one gene approach: the ability of Atoh1 to differentiate and maintain hair cells depends on the molecular context.
Jahan I, Pan N, Fritzsch B., Front Cell Neurosci 9(), 2015
PMID: 25698932
Jahan I, Pan N, Fritzsch B., Front Cell Neurosci 9(), 2015
PMID: 25698932
Neurog1 can partially substitute for Atoh1 function in hair cell differentiation and maintenance during organ of Corti development.
Jahan I, Pan N, Kersigo J, Fritzsch B., Development 142(16), 2015
PMID: 26209643
Jahan I, Pan N, Kersigo J, Fritzsch B., Development 142(16), 2015
PMID: 26209643
The quest for restoring hearing: Understanding ear development more completely.
Jahan I, Pan N, Elliott KL, Fritzsch B., Bioessays 37(9), 2015
PMID: 26208302
Jahan I, Pan N, Elliott KL, Fritzsch B., Bioessays 37(9), 2015
PMID: 26208302
Adaptations for the reception of natural stimuli
Janssen J., 2004
Janssen J., 2004
Neural basis of developing salt taste sensation: response changes in fetal, postnatal, and adult sheep.
Mistretta CM, Bradley RM., J. Comp. Neurol. 215(2), 1983
PMID: 6853773
Mistretta CM, Bradley RM., J. Comp. Neurol. 215(2), 1983
PMID: 6853773
Frequency response of the lateral-line organ of Xenopus laevis.
Kroese AB, Van der Zalm JM, Van den Bercken J., Pflugers Arch. 375(2), 1978
PMID: 567787
Kroese AB, Van der Zalm JM, Van den Bercken J., Pflugers Arch. 375(2), 1978
PMID: 567787
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Hox Genes and the Hindbrain: A Study in Segments.
Krumlauf R., Curr. Top. Dev. Biol. 116(), 2016
PMID: 26970643
Krumlauf R., Curr. Top. Dev. Biol. 116(), 2016
PMID: 26970643
Postembryonic development of the posterior lateral line in zebrafish.
Ledent V., Development 129(3), 2002
PMID: 11830561
Ledent V., Development 129(3), 2002
PMID: 11830561
Lewis ER, Leverenz EL, Bialek WS., 1985
Anatomical and physiological development of the human inner ear
Lim R, Brichta AM., 2016
Lim R, Brichta AM., 2016
Mash1 and neurogenin1 expression patterns define complementary domains of neuroepithelium in the developing CNS and are correlated with regions expressing notch ligands.
Ma Q, Sommer L, Cserjesi P, Anderson DJ., J. Neurosci. 17(10), 1997
PMID: 9133387
Ma Q, Sommer L, Cserjesi P, Anderson DJ., J. Neurosci. 17(10), 1997
PMID: 9133387
neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia.
Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ., Neuron 20(3), 1998
PMID: 9539122
Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ., Neuron 20(3), 1998
PMID: 9539122
Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.
Ma Q, Anderson DJ, Fritzsch B., J. Assoc. Res. Otolaryngol. 1(2), 2000
PMID: 11545141
Ma Q, Anderson DJ, Fritzsch B., J. Assoc. Res. Otolaryngol. 1(2), 2000
PMID: 11545141
Sensational placodes: neurogenesis in the otic and olfactory systems.
Maier EC, Saxena A, Alsina B, Bronner ME, Whitfield TT., Dev. Biol. 389(1), 2014
PMID: 24508480
Maier EC, Saxena A, Alsina B, Bronner ME, Whitfield TT., Dev. Biol. 389(1), 2014
PMID: 24508480
Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.
Maklad A, Kamel S, Wong E, Fritzsch B., Cell Tissue Res. 340(2), 2010
PMID: 20424840
Maklad A, Kamel S, Wong E, Fritzsch B., Cell Tissue Res. 340(2), 2010
PMID: 20424840
Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear.
Mao Y, Reiprich S, Wegner M, Fritzsch B., PLoS ONE 9(4), 2014
PMID: 24718611
Mao Y, Reiprich S, Wegner M, Fritzsch B., PLoS ONE 9(4), 2014
PMID: 24718611
Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region.
Marin F, Charnay P., Development 127(22), 2000
PMID: 11044406
Marin F, Charnay P., Development 127(22), 2000
PMID: 11044406
Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit
Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, Morris K, Feng F, Jones K, Lee J, Fritzsch B., 2005
Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, Morris K, Feng F, Jones K, Lee J, Fritzsch B., 2005
Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics.
Mazan S, Jaillard D, Baratte B, Janvier P., Evol. Dev. 2(4), 2000
PMID: 11252561
Mazan S, Jaillard D, Baratte B, Janvier P., Evol. Dev. 2(4), 2000
PMID: 11252561
Central lateral line mechanosensory pathways in bony fish
McCormick CA., 1989
McCormick CA., 1989
Otolith end organ projections to auditory neurons in the descending octaval nucleus of the goldfish, Carassius auratus: a confocal analysis.
McCormick CA, Wallace AC., Brain Behav. Evol. 80(1), 2012
PMID: 22846681
McCormick CA, Wallace AC., Brain Behav. Evol. 80(1), 2012
PMID: 22846681
Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response.
Mirjany M, Preuss T, Faber DS., J. Exp. Biol. 214(Pt 20), 2011
PMID: 21957099
Mirjany M, Preuss T, Faber DS., J. Exp. Biol. 214(Pt 20), 2011
PMID: 21957099
Electrosensory ampullary organs are derived from lateral line placodes in bony fishes.
Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CV., Nat Commun 2(), 2011
PMID: 21988912
Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CV., Nat Commun 2(), 2011
PMID: 21988912
Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus
Montgomery J, Bodznick D, Halstead M., J. Exp. Biol. 199(Pt 4), 1996
PMID: 9318679
Montgomery J, Bodznick D, Halstead M., J. Exp. Biol. 199(Pt 4), 1996
PMID: 9318679
The lateral line can mediate rheotaxis in fish
Montgomery J, Baker CF, Carton AG., 1997
Montgomery J, Baker CF, Carton AG., 1997
Montgomery J, Bleckmann H, Coombs S., 2014
Signals and noise in the elasmobranch electrosensory system
Montgomery JC, Bodznick D., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210675
Montgomery JC, Bodznick D., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210675
Nieuwenhuys R, Puelles L., 2015
The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins.
Northcutt RG, Gans C., Q Rev Biol 58(1), 1983
PMID: 6346380
Northcutt RG, Gans C., Q Rev Biol 58(1), 1983
PMID: 6346380
Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls.
Northcutt RG, Brandle K, Fritzsch B., Dev. Biol. 168(2), 1995
PMID: 7729575
Northcutt RG, Brandle K, Fritzsch B., Dev. Biol. 168(2), 1995
PMID: 7729575
The amniote paratympanic organ develops from a previously undiscovered sensory placode.
O'Neill P, Mak SS, Fritzsch B, Ladher RK, Baker CV., Nat Commun 3(), 2012
PMID: 22948823
O'Neill P, Mak SS, Fritzsch B, Ladher RK, Baker CV., Nat Commun 3(), 2012
PMID: 22948823
The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates.
Parker HJ, Bronner ME, Krumlauf R., Bioessays 38(6), 2016
PMID: 27027928
Parker HJ, Bronner ME, Krumlauf R., Bioessays 38(6), 2016
PMID: 27027928
Fate-mapping the mammalian hindbrain: segmental origins of vestibular projection neurons assessed using rhombomere-specific Hoxa2 enhancer elements in the mouse embryo.
Pasqualetti M, Diaz C, Renaud JS, Rijli FM, Glover JC., J. Neurosci. 27(36), 2007
PMID: 17804628
Pasqualetti M, Diaz C, Renaud JS, Rijli FM, Glover JC., J. Neurosci. 27(36), 2007
PMID: 17804628
The evolutionary history of vertebrate cranial placodes--I: cell type evolution.
Patthey C, Schlosser G, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24495912
Patthey C, Schlosser G, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24495912
Peter I, Davidson EH., 2015
Evolution of posterior lateral line development in fish and amphibians.
Pichon F, Ghysen A., Evol. Dev. 6(3), 2004
PMID: 15099306
Pichon F, Ghysen A., Evol. Dev. 6(3), 2004
PMID: 15099306
The development of lateral line placodes: taking a broader view.
Piotrowski T, Baker CV., Dev. Biol. 389(1), 2014
PMID: 24582732
Piotrowski T, Baker CV., Dev. Biol. 389(1), 2014
PMID: 24582732
A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378
Tracking wakes: the nocturnal predatory strategy of piscivorous catfish.
Pohlmann K, Grasso FW, Breithaupt T., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11390962
Pohlmann K, Grasso FW, Breithaupt T., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11390962
Über Flüssigkeitsbewegung bei sehr kleiner Reibung
Prandtl L., 1904
Prandtl L., 1904
Neuronal birth order identifies a dimorphic sensorineural map.
Pujol-Marti J, Zecca A, Baudoin JP, Faucherre A, Asakawa K, Kawakami K, Lopez-Schier H., J. Neurosci. 32(9), 2012
PMID: 22378871
Pujol-Marti J, Zecca A, Baudoin JP, Faucherre A, Asakawa K, Kawakami K, Lopez-Schier H., J. Neurosci. 32(9), 2012
PMID: 22378871
Developmental and architectural principles of the lateral-line neural map
Pujol-Martí J, López-Schier H., 2014
Pujol-Martí J, López-Schier H., 2014
Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus
Puzdrowski RL., 1989
Puzdrowski RL., 1989
The octavolateral systems in the stingray, Dasyatis sabina. I. Primary projections of the octaval and lateral line nerves.
Puzdrowski RL, Leonard RB., J. Comp. Neurol. 332(1), 1993
PMID: 8514920
Puzdrowski RL, Leonard RB., J. Comp. Neurol. 332(1), 1993
PMID: 8514920
Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3.
Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q., Genes Dev. 15(19), 2001
PMID: 11581159
Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q., Genes Dev. 15(19), 2001
PMID: 11581159
Hair-cell versus afferent adaptation in the semicircular canals.
Rabbitt RD, Boyle R, Holstein GR, Highstein SM., J. Neurophysiol. 93(1), 2004
PMID: 15306633
Rabbitt RD, Boyle R, Holstein GR, Highstein SM., J. Neurophysiol. 93(1), 2004
PMID: 15306633
Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control.
Raft S, Groves AK., Cell Tissue Res. 359(1), 2014
PMID: 24902666
Raft S, Groves AK., Cell Tissue Res. 359(1), 2014
PMID: 24902666
Development of the vertebrate inner ear.
Rinkwitz S, Bober E, Baker R., Ann. N. Y. Acad. Sci. 942(), 2001
PMID: 11710453
Rinkwitz S, Bober E, Baker R., Ann. N. Y. Acad. Sci. 942(), 2001
PMID: 11710453
Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
Ristroph L, Liao JC, Zhang J., Phys. Rev. Lett. 114(1), 2015
PMID: 25615505
Ristroph L, Liao JC, Zhang J., Phys. Rev. Lett. 114(1), 2015
PMID: 25615505
The epigenetic modifier DNMT3A is necessary for proper otic placode formation.
Roellig D, Bronner ME., Dev. Biol. 411(2), 2016
PMID: 26826496
Roellig D, Bronner ME., Dev. Biol. 411(2), 2016
PMID: 26826496
Principles of linear and angular vestibuloocular reflex organization in the frog.
Rohregger M, Dieringer N., J. Neurophysiol. 87(1), 2002
PMID: 11784757
Rohregger M, Dieringer N., J. Neurophysiol. 87(1), 2002
PMID: 11784757
Auditory system development: primary auditory neurons and their targets.
Rubel EW, Fritzsch B., Annu. Rev. Neurosci. 25(), 2002
PMID: 12052904
Rubel EW, Fritzsch B., Annu. Rev. Neurosci. 25(), 2002
PMID: 12052904
Cochleovestibular nerve development is integrated with migratory neural crest cells.
Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA., Dev. Biol. 385(2), 2013
PMID: 24252775
Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA., Dev. Biol. 385(2), 2013
PMID: 24252775
Boundary-layer theory
Schlichting DH, Gersten K., 1979
Schlichting DH, Gersten K., 1979
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
Schlosser G, Patthey C, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24491817
Schlosser G, Patthey C, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24491817
Organization of the superficial neuromast system in goldfish, Carassius auratus.
Schmitz A, Bleckmann H, Mogdans J., J. Morphol. 269(6), 2008
PMID: 18431809
Schmitz A, Bleckmann H, Mogdans J., J. Morphol. 269(6), 2008
PMID: 18431809
Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti.
Schwalbe MA, Bassett DK, Webb JF., J. Exp. Biol. 215(Pt 12), 2012
PMID: 22623194
Schwalbe MA, Bassett DK, Webb JF., J. Exp. Biol. 215(Pt 12), 2012
PMID: 22623194
Evolution and development of hair cell polarity and efferent function in the inner ear.
Sienknecht UJ, Koppl C, Fritzsch B., Brain Behav. Evol. 83(2), 2014
PMID: 24776995
Sienknecht UJ, Koppl C, Fritzsch B., Brain Behav. Evol. 83(2), 2014
PMID: 24776995
Zebrafish larvae evade predators by sensing water flow.
Stewart WJ, Cardenas GS, McHenry MJ., J. Exp. Biol. 216(Pt 3), 2013
PMID: 23325859
Stewart WJ, Cardenas GS, McHenry MJ., J. Exp. Biol. 216(Pt 3), 2013
PMID: 23325859
Rhombomeric organization of vestibular pathways in larval frogs.
Straka H, Baker R, Gilland E., J. Comp. Neurol. 437(1), 2001
PMID: 11477595
Straka H, Baker R, Gilland E., J. Comp. Neurol. 437(1), 2001
PMID: 11477595
Patterns of canal and otolith afferent input convergence in frog second-order vestibular neurons.
Straka H, Holler S, Goto F., J. Neurophysiol. 88(5), 2002
PMID: 12424270
Straka H, Holler S, Goto F., J. Neurophysiol. 88(5), 2002
PMID: 12424270
Differential spatial organization of otolith signals in frog vestibular nuclei.
Straka H, Holler S, Goto F, Kolb FP, Gilland E., J. Neurophysiol. 90(5), 2003
PMID: 12853438
Straka H, Holler S, Goto F, Kolb FP, Gilland E., J. Neurophysiol. 90(5), 2003
PMID: 12853438
Basic organization principles of the VOR: lessons from frogs.
Straka H, Dieringer N., Prog. Neurobiol. 73(4), 2004
PMID: 15261395
Straka H, Dieringer N., Prog. Neurobiol. 73(4), 2004
PMID: 15261395
Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity.
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB., Prog. Neurobiol. 76(6), 2005
PMID: 16263204
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB., Prog. Neurobiol. 76(6), 2005
PMID: 16263204
Vestibulo-ocular signal transformation in frequency-tuned channels.
Straka H, Lambert FM, Pfanzelt S, Beraneck M., Ann. N. Y. Acad. Sci. 1164(), 2009
PMID: 19645878
Straka H, Lambert FM, Pfanzelt S, Beraneck M., Ann. N. Y. Acad. Sci. 1164(), 2009
PMID: 19645878
Ontogenetic rules and constraints of vestibulo-ocular reflex development.
Straka H., Curr. Opin. Neurobiol. 20(6), 2010
PMID: 20637600
Straka H., Curr. Opin. Neurobiol. 20(6), 2010
PMID: 20637600
Vestibular blueprint in early vertebrates.
Straka H, Baker R., Front Neural Circuits 7(), 2013
PMID: 24312016
Straka H, Baker R., Front Neural Circuits 7(), 2013
PMID: 24312016
Connecting ears to eye muscles: evolution of a 'simple' reflex arc.
Straka H, Fritzsch B, Glover JC., Brain Behav. Evol. 83(2), 2014
PMID: 24776996
Straka H, Fritzsch B, Glover JC., Brain Behav. Evol. 83(2), 2014
PMID: 24776996
Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus.
Tarby ML, Webb JF., J. Morphol. 255(1), 2003
PMID: 12420320
Tarby ML, Webb JF., J. Morphol. 255(1), 2003
PMID: 12420320
Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology
van S., 2006
van S., 2006
The biophysics of the fish lateral line
van SM, McHenry MJ., 2014
van SM, McHenry MJ., 2014
The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus).
Van Trump WJ, McHenry MJ., Integr. Comp. Biol. 53(5), 2013
PMID: 23722083
Van Trump WJ, McHenry MJ., Integr. Comp. Biol. 53(5), 2013
PMID: 23722083
Responses of anterior lateral line afferent neurones to water flow.
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Lateral line diversity among ecologically divergent threespine stickleback populations.
Wark AR, Peichel CL., J. Exp. Biol. 213(1), 2010
PMID: 20008367
Wark AR, Peichel CL., J. Exp. Biol. 213(1), 2010
PMID: 20008367
Developmental constraints and evolution of the lateral line system in teleost fishes
Webb JF., 1989
Webb JF., 1989
Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes.
Webb JF., Brain Behav. Evol. 33(1), 1989
PMID: 2655823
Webb JF., Brain Behav. Evol. 33(1), 1989
PMID: 2655823
Morphological diversity, development, and evolution of the mechanosensory lateral line system
Webb JF., 2014
Webb JF., 2014
The area octavo-lateralis in Xenopus laevis
Will U, Luhede G, Görner P., 1985
Will U, Luhede G, Görner P., 1985
The eighth nerve of amphibians: peripheral and central distribution
Will U, Fritzsch B., 1988
Will U, Fritzsch B., 1988
The mechanisms of dorsoventral patterning in the vertebrate neural tube.
Wilson L, Maden M., Dev. Biol. 282(1), 2005
PMID: 15936325
Wilson L, Maden M., Dev. Biol. 282(1), 2005
PMID: 15936325
The central nervous organization of the lateral line system
Wullimann MF, Grothe B., 2014
Wullimann MF, Grothe B., 2014
The Order and Place of Neuronal Differentiation Establish the Topography of Sensory Projections and the Entry Points within the Hindbrain.
Zecca A, Dyballa S, Voltes A, Bradley R, Pujades C., J. Neurosci. 35(19), 2015
PMID: 25972174
Zecca A, Dyballa S, Voltes A, Bradley R, Pujades C., J. Neurosci. 35(19), 2015
PMID: 25972174
Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis.
Zittlau KE, Claas B, Munz H, Gorner P., Neurosci. Lett. 60(1), 1985
PMID: 4058802
Zittlau KE, Claas B, Munz H, Gorner P., Neurosci. Lett. 60(1), 1985
PMID: 4058802
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 28988233
PubMed | Europe PMC
Suchen in