Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective

Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H (2017)
Brain, Behavior and Evolution 90(2): 98-116.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chagnaud, Boris P.; Engelmann, JacobUniBi ; Fritzsch, Bernd; Glover, Joel C.; Straka, Hans
Erscheinungsjahr
2017
Zeitschriftentitel
Brain, Behavior and Evolution
Band
90
Ausgabe
2
Seite(n)
98-116
ISSN
1421-9743
Page URI
https://pub.uni-bielefeld.de/record/2914661

Zitieren

Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution. 2017;90(2):98-116.
Chagnaud, B. P., Engelmann, J., Fritzsch, B., Glover, J. C., & Straka, H. (2017). Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution, 90(2), 98-116. doi:10.1159/000456646
Chagnaud, Boris P., Engelmann, Jacob, Fritzsch, Bernd, Glover, Joel C., and Straka, Hans. 2017. “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”. Brain, Behavior and Evolution 90 (2): 98-116.
Chagnaud, B. P., Engelmann, J., Fritzsch, B., Glover, J. C., and Straka, H. (2017). Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution 90, 98-116.
Chagnaud, B.P., et al., 2017. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution, 90(2), p 98-116.
B.P. Chagnaud, et al., “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”, Brain, Behavior and Evolution, vol. 90, 2017, pp. 98-116.
Chagnaud, B.P., Engelmann, J., Fritzsch, B., Glover, J.C., Straka, H.: Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution. 90, 98-116 (2017).
Chagnaud, Boris P., Engelmann, Jacob, Fritzsch, Bernd, Glover, Joel C., and Straka, Hans. “Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective”. Brain, Behavior and Evolution 90.2 (2017): 98-116.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G., J Neurosci 39(6), 2019
PMID: 30541910
Topologically correct central projections of tetrapod inner ear afferents require Fzd3.
Duncan JS, Fritzsch B, Houston DW, Ketchum EM, Kersigo J, Deans MR, Elliott KL., Sci Rep 9(1), 2019
PMID: 31311957
Differentiation and Induced Sensorial Alteration of the Coronal Organ in the Asexual Life of a Tunicate.
Manni L, Anselmi C, Burighel P, Martini M, Gasparini F., Integr Comp Biol 58(2), 2018
PMID: 29873734

156 References

Daten bereitgestellt von Europe PubMed Central.

Somatotopy of the lateral line projection in larval zebrafish.
Alexandre D, Ghysen A., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377454
Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum
Bartels M, Münz H, Claas B., 1990
Number and distribution of superficial neuromasts in twelve common european cypriniform fishes and their relationship to habitat occurrence
Beckmann M, Erős T, Schmitz A, Bleckmann H., 2010
Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
Behrend O, Branoner F, Zhivkov Z, Ziehm U., Eur. J. Neurosci. 23(3), 2006
PMID: 16487154
Proprioceptor pathway development is dependent on Math1.
Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY, Bellen HJ., Neuron 30(2), 2001
PMID: 11395003

Bleckmann H, Mogdans J, Coombs SL., 2014
Early efferent innervation of the zebrafish lateral line.
Bricaud O, Chaar V, Dambly-Chaudiere C, Ghysen A., J. Comp. Neurol. 434(3), 2001
PMID: 11331527
Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H., J. Neurosci. 28(17), 2008
PMID: 18434526
Spinal corollary discharge modulates motion sensing during vertebrate locomotion.
Chagnaud BP, Banchi R, Simmers J, Straka H., Nat Commun 6(), 2015
PMID: 26337184
Eye-specific termination bands in tecta of three-eyed frogs.
Constantine-Paton M, Law MI., Science 202(4368), 1978
PMID: 309179
Function and evolution of superficial neuromasts in an Antarctic notothenioid fish.
Coombs S, Montgomery J., Brain Behav. Evol. 44(6), 1994
PMID: 7881995

Dabdoub A, Fritzsch B, Popper AN, Fay RR., 2016
Zur Vergleichenden Anatomie der Labyrinthinnervation
de HM., 1929
Mechanical factors in the excitation of clupeid lateral lines.
Denton EJ, Gray J., Proc. R. Soc. Lond., B, Biol. Sci. 218(1210), 1983
PMID: 6135206
Mechanical factors in the excitation of the lateral lines of fishes
Denton EJ, Gray JAB., 1988
Some observations on the forces acting on neuromasts in fish lateral line canals
Denton EJ, Gray JAB., 1989
Assembly of the auditory circuitry by a Hox genetic network in the mouse brainstem.
Di Bonito M, Narita Y, Avallone B, Sequino L, Mancuso M, Andolfi G, Franze AM, Puelles L, Rijli FM, Studer M., PLoS Genet. 9(2), 2013
PMID: 23408898
Loss of projections, functional compensation, and residual deficits in the mammalian vestibulospinal system of Hoxb1-deficient mice
Di M, Boulland J-L, Krezel W, Setti E, Studer M, Glover JC., 2015
The functioning and significance of the lateral-line organs.
DIJKGRAAF S., Biol Rev Camb Philos Soc 38(), 1963
PMID: 14027866
Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord
Elliott KL, Fritzsch B., 2011
Lateral line reception in still- and running water
Engelmann J, Hanke W, Bleckmann H., 2002
Coding of lateral line stimuli in the goldfish midbrain in still and running water.
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Welcome to Neural Development.
Lumsden A, Harris B, Sanes JR, Wong R., Neural Dev 1(), 2006
PMID: PMC1636331
Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation.
Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H., PLoS ONE 4(2), 2009
PMID: 19223970
Dual embryonic origin of the mammalian otic vesicle forming the inner ear.
Freyer L, Aggarwal V, Morrow BE., Development 138(24), 2011
PMID: 22110056
Metamorphic changes in the octavolateralis system of amphibians
Fritzsch B, Wahnschaffe U, Bartsch U., 1988
A discrete projection of the sacculus and lagena to a distinct brainstem nucleus in a catfish.
Fritzsch B, Niemann U, Bleckmann H., Neurosci. Lett. 111(1-2), 1990
PMID: 2336194
On the coincidence of loss of electroreception and reorganization of brain stem nuclei in vertebrates
Fritzsch B., 1991
Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds
Fritzsch B, Sarai P, Barbacid M, Silos-Santiago I., 1997
Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears.
Fritzsch B, Signore M, Simeone A, Fritzsch B., Dev. Genes Evol. 211(8-9), 2001
PMID: 11685572
Evolution and development of the vertebrate ear.
Fritzsch B, Beisel KW, Fritzsch B., Brain Res. Bull. 55(6), 2001
PMID: 11595355
The molecular and developmental basis of the evolution of the vertebrate auditory system
Fritzsch B, Pauley S, Feng F, Matei V, Nichols D., 2006
Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes
Fritzsch B, Glover J., 2007
The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis.
Fritzsch B, Eberl DF, Beisel KW., Cell. Mol. Life Sci. 67(18), 2010
PMID: 20495996
Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective.
Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T., Evol. Dev. 15(1), 2013
PMID: 23331918
Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies
Fritzsch B, Straka H., 2014
Evolution of polarized hair cells in aquatic vertebrates and their connection to directionally sensitive neurons
Fritzsch B, López-Schier H., 2014
Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L., 2013
Making sense of zebrafish neural development in the Minervois.
Ghysen A, Dambly-Chaudiere C, Raible D., Neural Dev 2(), 2007
PMID: 17686145
A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus.
Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ., J. Comp. Neurol. 522(10), 2014
PMID: 24452830
Retinoic acid and hindbrain patterning.
Glover JC, Renaud JS, Rijli FM., J. Neurobiol. 66(7), 2006
PMID: 16688767
Early development of the spiral ganglion
Goodrich LV., 2016
Object localization through the lateral line system of fish: theory and experiment
Goulet J, Engelmann J, Chagnaud B, Franosch J-M, Suttner M, van J., 2008
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J. Neurophysiol. 107(10), 2012
PMID: 22378175
Determinants of spatial and temporal coding by semicircular canal afferents.
Highstein SM, Rabbitt RD, Holstein GR, Boyle RD., J. Neurophysiol. 93(5), 2005
PMID: 15845995
Plasticity of ocular dominance columns in monkey striate cortex.
Hubel DH, Wiesel TN, LeVay S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 278(961), 1977
PMID: 19791
Neurod1 regulates survival and formation of connections in mouse ear and brain.
Jahan I, Kersigo J, Pan N, Fritzsch B., Cell Tissue Res. 341(1), 2010
PMID: 20512592
The quest for restoring hearing: Understanding ear development more completely.
Jahan I, Pan N, Elliott KL, Fritzsch B., Bioessays 37(9), 2015
PMID: 26208302
Adaptations for the reception of natural stimuli
Janssen J., 2004
Frequency response of the lateral-line organ of Xenopus laevis.
Kroese AB, Van der Zalm JM, Van den Bercken J., Pflugers Arch. 375(2), 1978
PMID: 567787
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Hox Genes and the Hindbrain: A Study in Segments.
Krumlauf R., Curr. Top. Dev. Biol. 116(), 2016
PMID: 26970643

Lewis ER, Leverenz EL, Bialek WS., 1985
Anatomical and physiological development of the human inner ear
Lim R, Brichta AM., 2016
neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia.
Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ., Neuron 20(3), 1998
PMID: 9539122
Sensational placodes: neurogenesis in the otic and olfactory systems.
Maier EC, Saxena A, Alsina B, Bronner ME, Whitfield TT., Dev. Biol. 389(1), 2014
PMID: 24508480
Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice.
Maklad A, Kamel S, Wong E, Fritzsch B., Cell Tissue Res. 340(2), 2010
PMID: 20424840
Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell cycle exit
Matei V, Pauley S, Kaing S, Rowitch D, Beisel K, Morris K, Feng F, Jones K, Lee J, Fritzsch B., 2005
Central lateral line mechanosensory pathways in bony fish
McCormick CA., 1989
Electrosensory ampullary organs are derived from lateral line placodes in bony fishes.
Modrell MS, Bemis WE, Northcutt RG, Davis MC, Baker CV., Nat Commun 2(), 2011
PMID: 21988912
Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus
Montgomery J, Bodznick D, Halstead M., J. Exp. Biol. 199(Pt 4), 1996
PMID: 9318679
The lateral line can mediate rheotaxis in fish
Montgomery J, Baker CF, Carton AG., 1997

Montgomery J, Bleckmann H, Coombs S., 2014
Signals and noise in the elasmobranch electrosensory system
Montgomery JC, Bodznick D., J. Exp. Biol. 202(# (Pt 10)), 1999
PMID: 10210675

Nieuwenhuys R, Puelles L., 2015
Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls.
Northcutt RG, Brandle K, Fritzsch B., Dev. Biol. 168(2), 1995
PMID: 7729575
The amniote paratympanic organ develops from a previously undiscovered sensory placode.
O'Neill P, Mak SS, Fritzsch B, Ladher RK, Baker CV., Nat Commun 3(), 2012
PMID: 22948823
The evolutionary history of vertebrate cranial placodes--I: cell type evolution.
Patthey C, Schlosser G, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24495912

Peter I, Davidson EH., 2015
The development of lateral line placodes: taking a broader view.
Piotrowski T, Baker CV., Dev. Biol. 389(1), 2014
PMID: 24582732
A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378
Tracking wakes: the nocturnal predatory strategy of piscivorous catfish.
Pohlmann K, Grasso FW, Breithaupt T., Proc. Natl. Acad. Sci. U.S.A. 98(13), 2001
PMID: 11390962
Über Flüssigkeitsbewegung bei sehr kleiner Reibung
Prandtl L., 1904
Neuronal birth order identifies a dimorphic sensorineural map.
Pujol-Marti J, Zecca A, Baudoin JP, Faucherre A, Asakawa K, Kawakami K, Lopez-Schier H., J. Neurosci. 32(9), 2012
PMID: 22378871
Developmental and architectural principles of the lateral-line neural map
Pujol-Martí J, López-Schier H., 2014
Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus
Puzdrowski RL., 1989
Hair-cell versus afferent adaptation in the semicircular canals.
Rabbitt RD, Boyle R, Holstein GR, Highstein SM., J. Neurophysiol. 93(1), 2004
PMID: 15306633
Development of the vertebrate inner ear.
Rinkwitz S, Bober E, Baker R., Ann. N. Y. Acad. Sci. 942(), 2001
PMID: 11710453
Lateral line layout correlates with the differential hydrodynamic pressure on swimming fish.
Ristroph L, Liao JC, Zhang J., Phys. Rev. Lett. 114(1), 2015
PMID: 25615505
Principles of linear and angular vestibuloocular reflex organization in the frog.
Rohregger M, Dieringer N., J. Neurophysiol. 87(1), 2002
PMID: 11784757
Auditory system development: primary auditory neurons and their targets.
Rubel EW, Fritzsch B., Annu. Rev. Neurosci. 25(), 2002
PMID: 12052904
Cochleovestibular nerve development is integrated with migratory neural crest cells.
Sandell LL, Butler Tjaden NE, Barlow AJ, Trainor PA., Dev. Biol. 385(2), 2013
PMID: 24252775
Boundary-layer theory
Schlichting DH, Gersten K., 1979
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.
Schlosser G, Patthey C, Shimeld SM., Dev. Biol. 389(1), 2014
PMID: 24491817
Organization of the superficial neuromast system in goldfish, Carassius auratus.
Schmitz A, Bleckmann H, Mogdans J., J. Morphol. 269(6), 2008
PMID: 18431809
Evolution and development of hair cell polarity and efferent function in the inner ear.
Sienknecht UJ, Koppl C, Fritzsch B., Brain Behav. Evol. 83(2), 2014
PMID: 24776995
Zebrafish larvae evade predators by sensing water flow.
Stewart WJ, Cardenas GS, McHenry MJ., J. Exp. Biol. 216(Pt 3), 2013
PMID: 23325859
Rhombomeric organization of vestibular pathways in larval frogs.
Straka H, Baker R, Gilland E., J. Comp. Neurol. 437(1), 2001
PMID: 11477595
Differential spatial organization of otolith signals in frog vestibular nuclei.
Straka H, Holler S, Goto F, Kolb FP, Gilland E., J. Neurophysiol. 90(5), 2003
PMID: 12853438
Basic organization principles of the VOR: lessons from frogs.
Straka H, Dieringer N., Prog. Neurobiol. 73(4), 2004
PMID: 15261395
Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity.
Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB., Prog. Neurobiol. 76(6), 2005
PMID: 16263204
Vestibulo-ocular signal transformation in frequency-tuned channels.
Straka H, Lambert FM, Pfanzelt S, Beraneck M., Ann. N. Y. Acad. Sci. 1164(), 2009
PMID: 19645878
Ontogenetic rules and constraints of vestibulo-ocular reflex development.
Straka H., Curr. Opin. Neurobiol. 20(6), 2010
PMID: 20637600
Vestibular blueprint in early vertebrates.
Straka H, Baker R., Front Neural Circuits 7(), 2013
PMID: 24312016
Connecting ears to eye muscles: evolution of a 'simple' reflex arc.
Straka H, Fritzsch B, Glover JC., Brain Behav. Evol. 83(2), 2014
PMID: 24776996
Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology
van S., 2006
The biophysics of the fish lateral line
van SM, McHenry MJ., 2014
Responses of anterior lateral line afferent neurones to water flow.
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Developmental constraints and evolution of the lateral line system in teleost fishes
Webb JF., 1989
Morphological diversity, development, and evolution of the mechanosensory lateral line system
Webb JF., 2014
The area octavo-lateralis in Xenopus laevis
Will U, Luhede G, Görner P., 1985
The eighth nerve of amphibians: peripheral and central distribution
Will U, Fritzsch B., 1988
The central nervous organization of the lateral line system
Wullimann MF, Grothe B., 2014
Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis.
Zittlau KE, Claas B, Munz H, Gorner P., Neurosci. Lett. 60(1), 1985
PMID: 4058802
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 28988233
PubMed | Europe PMC

Suchen in

Google Scholar