High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts

Wedde S, Kleusch C, Bakonyi D, Gröger H (2017)
Chembiochem : a European journal of chemical biology 18(24): 2399-2403.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Erscheinungsjahr
Zeitschriftentitel
Chembiochem : a European journal of chemical biology
Band
18
Ausgabe
24
Seite(n)
2399-2403
ISSN
PUB-ID

Zitieren

Wedde S, Kleusch C, Bakonyi D, Gröger H. High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts. Chembiochem : a European journal of chemical biology. 2017;18(24):2399-2403.
Wedde, S., Kleusch, C., Bakonyi, D., & Gröger, H. (2017). High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts. Chembiochem : a European journal of chemical biology, 18(24), 2399-2403. doi:10.1002/cbic.201700526
Wedde, S., Kleusch, C., Bakonyi, D., and Gröger, H. (2017). High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts. Chembiochem : a European journal of chemical biology 18, 2399-2403.
Wedde, S., et al., 2017. High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts. Chembiochem : a European journal of chemical biology, 18(24), p 2399-2403.
S. Wedde, et al., “High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts”, Chembiochem : a European journal of chemical biology, vol. 18, 2017, pp. 2399-2403.
Wedde, S., Kleusch, C., Bakonyi, D., Gröger, H.: High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts. Chembiochem : a European journal of chemical biology. 18, 2399-2403 (2017).
Wedde, Severin, Kleusch, Christian, Bakonyi, Daniel, and Gröger, Harald. “High-throughput-feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts”. Chembiochem : a European journal of chemical biology 18.24 (2017): 2399-2403.

43 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 0

Liese, 2006

Drauz, 2012
New generation of biocatalysts for organic synthesis.
Nestl BM, Hammer SC, Nebel BA, Hauer B., Angew. Chem. Int. Ed. Engl. 53(12), 2014
PMID: 24520044

AUTHOR UNKNOWN, Angew. Chem. 126(), 2014

AUTHOR UNKNOWN, 0
Biotransformation in organic media by enzymes and whole cells.
Cabral JM, Aires-Barros MR, Pinheiro H, Prazeres DM., J. Biotechnol. 59(1-2), 1997
PMID: 9487721

León, Enzyme Microb. Technol. 23(), 1998

AUTHOR UNKNOWN, 0
Nature versus nurture: developing enzymes that function under extreme conditions.
Liszka MJ, Clark ME, Schneider E, Clark DS., Annu Rev Chem Biomol Eng 3(), 2012
PMID: 22468597
Recent trends in biocatalysis engineering.
Illanes A, Cauerhff A, Wilson L, Castro GR., Bioresour. Technol. 115(), 2011
PMID: 22424920

AUTHOR UNKNOWN, 0
Stability of biocatalysts.
Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF., Curr Opin Chem Biol 11(2), 2007
PMID: 17307381
Stabilizing biocatalysts.
Bommarius AS, Paye MF., Chem Soc Rev 42(15), 2013
PMID: 23807146

AUTHOR UNKNOWN, 0
How to study proteins by circular dichroism.
Kelly SM, Jess TJ, Price NC., Biochim. Biophys. Acta 1751(2), 2005
PMID: 16027053
Differential scanning calorimetry as a tool for protein folding and stability.
Johnson CM., Arch. Biochem. Biophys. 531(1-2), 2012
PMID: 23022410

Durowoju, J. Vis. Exp. 121(), 2017
Optimization of protein purification and characterization using Thermofluor screens.
Boivin S, Kozak S, Meijers R., Protein Expr. Purif. 91(2), 2013
PMID: 23948764

Huynh, Curr. Protoc. Protein Sci. 79(), 2015

Nettleship, 2008

AUTHOR UNKNOWN, 0
Automated high-throughput purification of 6xHis-tagged proteins.
Schafer F, Romer U, Emmerlich M, Blumer J, Lubenow H, Steinert K., J Biomol Tech 13(3), 2002
PMID: 19498977
Perspectives of immobilized-metal affinity chromatography.
Gaberc-Porekar V, Menart V., J. Biochem. Biophys. Methods 49(1-3), 2001
PMID: 11694288
Creating an Efficient Methanol-Stable Biocatalyst by Protein and Immobilization Engineering Steps towards Efficient Biosynthesis of Biodiesel.
Gihaz S, Weiser D, Dror A, Satorhelyi P, Jerabek-Willemsen M, Poppe L, Fishman A., ChemSusChem 9(22), 2016
PMID: 27778473

Weckbecker, Biocatal. Biotransform. 24(), 2006

AUTHOR UNKNOWN, 0
Direct biocatalytic one-pot-transformation of cyclohexanol with molecular oxygen into ɛ-caprolactone.
Staudt S, Bornscheuer UT, Menyes U, Hummel W, Groger H., Enzyme Microb. Technol. 53(4), 2013
PMID: 23931696
A self-sufficient Baeyer-Villiger biocatalysis system for the synthesis of ɛ-caprolactone from cyclohexanol.
Mallin H, Wulf H, Bornscheuer UT., Enzyme Microb. Technol. 53(4), 2013
PMID: 23931695
An enzyme cascade synthesis of ε-caprolactone and its oligomers.
Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Groger H, Liese A, Herz HG, Bornscheuer UT., Angew. Chem. Int. Ed. Engl. 54(9), 2015
PMID: 25597635

AUTHOR UNKNOWN, Angew. Chem. 127(), 2015

Scherkus, ChemCatChem 8(), 2016

Reimer, J. Heterocycl. Chem. 54(), 2017

Wedde, Green Chem. 19(), 2017
Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
Scherkus C, Schmidt S, Bornscheuer UT, Groger H, Kara S, Liese A., Biotechnol. Bioeng. 114(6), 2017
PMID: 28112389

Gröger, 2016

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 29024398
PubMed | Europe PMC

Suchen in

Google Scholar