A multigrid method for the Cahn–Hilliard equation with obstacle potential
Banas L, Nürnberg R (2009)
Applied Mathematics and Computation 213(2): 290-303.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Banas, LubomirUniBi;
Nürnberg, Robert
Einrichtung
Abstract / Bemerkung
We present a multigrid finite element method for the deep quench obstacle Cahn–Hilliard equation. The non-smooth nature of this highly nonlinear fourth order partial differential equation make this problem particularly challenging. The method exhibits mesh-independent convergence properties in practice for arbitrary time step sizes. In addition, numerical evidence shows that this behaviour extends to small values of the interfacial parameter . Several numerical examples are given, including comparisons with existing alternative solution methods for the Cahn–Hilliard equation.
Erscheinungsjahr
2009
Zeitschriftentitel
Applied Mathematics and Computation
Band
213
Ausgabe
2
Seite(n)
290-303
ISSN
0096-3003
Page URI
https://pub.uni-bielefeld.de/record/2914618
Zitieren
Banas L, Nürnberg R. A multigrid method for the Cahn–Hilliard equation with obstacle potential. Applied Mathematics and Computation. 2009;213(2):290-303.
Banas, L., & Nürnberg, R. (2009). A multigrid method for the Cahn–Hilliard equation with obstacle potential. Applied Mathematics and Computation, 213(2), 290-303. doi:10.1016/j.amc.2009.03.036
Banas, Lubomir, and Nürnberg, Robert. 2009. “A multigrid method for the Cahn–Hilliard equation with obstacle potential”. Applied Mathematics and Computation 213 (2): 290-303.
Banas, L., and Nürnberg, R. (2009). A multigrid method for the Cahn–Hilliard equation with obstacle potential. Applied Mathematics and Computation 213, 290-303.
Banas, L., & Nürnberg, R., 2009. A multigrid method for the Cahn–Hilliard equation with obstacle potential. Applied Mathematics and Computation, 213(2), p 290-303.
L. Banas and R. Nürnberg, “A multigrid method for the Cahn–Hilliard equation with obstacle potential”, Applied Mathematics and Computation, vol. 213, 2009, pp. 290-303.
Banas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Applied Mathematics and Computation. 213, 290-303 (2009).
Banas, Lubomir, and Nürnberg, Robert. “A multigrid method for the Cahn–Hilliard equation with obstacle potential”. Applied Mathematics and Computation 213.2 (2009): 290-303.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in