A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy

Banas L, Nürnberg R (2009)
ESAIM: Mathematical Modelling and Numerical Analysis 43(5): 1003-1026.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Banas, LubomirUniBi; Nürnberg, Robert
Abstract / Bemerkung
We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.
Erscheinungsjahr
2009
Zeitschriftentitel
ESAIM: Mathematical Modelling and Numerical Analysis
Band
43
Ausgabe
5
Seite(n)
1003-1026
ISSN
0764-583X, 1290-3841
Page URI
https://pub.uni-bielefeld.de/record/2914616

Zitieren

Banas L, Nürnberg R. A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis. 2009;43(5):1003-1026.
Banas, L., & Nürnberg, R. (2009). A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis, 43(5), 1003-1026. doi:10.1051/m2an/2009015
Banas, Lubomir, and Nürnberg, Robert. 2009. “A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy”. ESAIM: Mathematical Modelling and Numerical Analysis 43 (5): 1003-1026.
Banas, L., and Nürnberg, R. (2009). A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis 43, 1003-1026.
Banas, L., & Nürnberg, R., 2009. A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis, 43(5), p 1003-1026.
L. Banas and R. Nürnberg, “A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy”, ESAIM: Mathematical Modelling and Numerical Analysis, vol. 43, 2009, pp. 1003-1026.
Banas, L., Nürnberg, R.: A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy. ESAIM: Mathematical Modelling and Numerical Analysis. 43, 1003-1026 (2009).
Banas, Lubomir, and Nürnberg, Robert. “A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy”. ESAIM: Mathematical Modelling and Numerical Analysis 43.5 (2009): 1003-1026.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar